AD=A096 556

UNCLASSIFIED

MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE=-ETC F/6 9/2
THE DEFINITION AND IMPLEMENTATION OF A COMPUTER PROGRAMMING LAN=-=ETC(U)
AUG 80 6 L STEELE NOODlH-SO-C-OSOS
AI-TR=595

~

R

%EiTR—S%J @ .

-~ - A A - _.—\
.

THE DFFINITION AND IMPLEMENTATION

OF A COMPUTER PROGRAMMING LANGUAGE
- \ BASED ON gONSTRAINTS, -

A e o

@- GUY LEWIS/STEELB/ |
@272/
@A‘él}g“Sf) |

/
=any’

DIlG
.|\a:__Q_(M>1¥— Fp-Co —$5 ¢85 | gw\mwma

| This docume thasboenamvnl
forpnblicm!meandld..h
’E distribution is unlimited.

Q
’ E_‘J MASSACHUSETTS INSTITUTE OF TECHNOLOGY
= '

=

. ARTIFICIAL INTELLIGENCE LABORATORY

% DY at~
81 3*“18 046

-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)
REPORT DOCUMENTATION PAGE BEF o O O RM
[T. REPORT NUMBER 2, GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AI-TR-595 - ADAD 76 656
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
The Difinition and Implementation of a Technical Report
Computer Programming Language Based on
Constraints S. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e) §. CONTRACT OR GRANT NUMBER(s) |
Guy Lewis Steele Jr. N00014-80-C-0505
9. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM ELEMENT, FROJECT.—T;ASK

M
Artificial Intelligence Laboratory AREA & WORK UNIT NumMBERS

545 Technology Square
Cambridge, Massachusetts 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency August 1980
1400 Wilson Blvd 3. NUMBER OF PAGES
Arlington, Virginia 22209 372

4 MONITORING AGENCY NAME & ADDR?SS(H ditferent trom Controlling Office) 15. SECURITY CL ASS. (of thie repon,
Office of Naval Research UNCLASSIFIED

Information Systems ‘
Arlington, Virginia 22217 'i'ia."ﬁ'stast\::cnuoﬂoowu'cn'uo'mc

ey s ——
16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Blook 20, il different from Report)

t8. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse alde If necessary and identily by block number)
Constraints Programming Languages
Local Propagation Data Flow
Theorem Provers
Automatic deduction

-~

he constraint paradigm is a model of computation in which values are deduced
whenever possible, under the limitation that deductions be local in a
certain sense. One may visualize a constraint "program" as a network of
devices connected by wires. Data values may flow along the wires, and
computation is performed by the devices. A device computes using only
locally available information (with a few exceptions), and places newly

%STRACT (Continue on reverse eide if necessary and identify by block number)

derived values on other, locally attached wires. In this way computed values —17

are propagated. An advantage of the constraint paradigm (not unique to it)

DD ,"S%", 1473 eoition oF 1 oV 6813 oBsOLETE UNCLASSIFIED
SRCURITY CLASSIFICATION OF THIS FAGE (When Dete Fntered)

S/N 0:102-014- 6601 |

~§s that a single relationship can be used in more than one direction. The connections
“ “to a device are not labelled as inputs and outputs; a device will compute with
s whatever values are available, and produce as many new values as it can. General
theorem provers are capable of such behavior, but tend to suffer from combinatorial
explosion; it is not usually useful to derive all the possible consequences of a set
of hypotheses. The constraint paradigm places a certain kind of limitation on the
deduction process.

The limitations imposed by the constraint paradigm are not the only one
possible. It is argued, however, that they are restrictive enough to forstall
combinatorial explosion in many interesting computational situations, yet permissive
enough to allow useful computations in practical situations. Moreover, the i
paradigm is intuitive; it is easy to visualize the computational effects of these
particular limitations, and the paradigm is a natural way of expressing programs
for certain applications, in particular relationships arising in computer-aided
design.

<A number of implementations of constraint-based programming languages are
presented. progression of ever more powerful languages is described, complete
implementafions are presented, and design difficulties and alternatives are '
discussed. \The goal approached, though not quite reached, is a complete programming b
system whichi will implicitly support the constraint paradigm to the same extent g
that LISP, shy, supports automatic storage management. ‘ |

i
!) -

This report describés research done at the Artificial Intelligence Laboratory

of the Massachusetts Institute of Technology. Support for the Laboratory's
artificial intelligence research is provided in part by the Advance Research
Projects Agency of the Department of Defense under Office of Naval Research

contract N0OO14-80-C-0505.

© Guy L.ewis Stecle Jr. 1980

The author hereby grants to M.LT. permission to reproduce
and to distribute copics of this thesis document in whole or in part.

I poran~lcen Frr
NTYTE L CTEL
) 1] |v

A Dissertation on Rescarch Concerning
The Definition and Implementation of
A Computer Programming Language
intended as a platform on which to erect]
Systems for Computer-Aided Duesign of Engineered Objects
based on

CONSTRAINTS &

A Mudel for Computation ﬂ
combining
A Simple Declarative Semantics
with
A Vivid Intuitive Visualization
as a network of
Simuttancously Active Physical Devices Computing in Paallel
Without Prior Prejudice as to the Direction of the Flow of Data
using the technique of
Local Propagation
augmented by
Dependency -Directed Backtracking for Duetecting and Resolving Global Inconsistencics

Guy Lcwis Stecle Jr.

August 1980

-y

This report reproduces a dissertation submitted on August 8, 1980 to the Department of

Electrical Engineering and Computer Science of the Massachusetts Institute of Technology in par- |
tial fullillment of the requirements for the degree of Daoctor of Philosophy.

The Definition and Implementation of
A Computer Progranmuning | anguage
Based on Constraints

Guy I.cwis Steele Jr.

Submitted 10 the Depariment of Electrical Engineering and Computer Science
on August 8, 1980 in partial fulfiliment of the requirements (:
for the degree of Doctor of Philosophy '

e a

ABSITRACT

[,

The constraint paradigm is a model of computation in which values are deduced whenever
possible, under the limitation that deductions be local in a certain sense. Onc may visualize a
constraint “program’ as a network of devices connected by wi s, Data values may flow along the
wires, and computation is performed by the devices. A device computes using only locally available
information (with a foew cxceptions), and places newly derived values on o*her, locally attached

wircs. In this way computed values are propagated.

An advantage of the constraint paradigm (not unique to it) is that a single relationship can
be used in more than onc direction. The connections to a device are not labelled as inputs and out-
puts; a device will compute with whatever values are available, and produce as many new vatues as
it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial
explosion: it is not usually useful to derive all the possible consequences of a sct of hypotheses. The
constraint paradigm places a certain kind of limitation on the deduction process.

The limitations imposed by the constraint paradigm arc not the only one possible. |t is
argucd, however, that they are restrictive enough to forestall combinatorial explosion in many in-
teresting computational situations, yet permissive enough to allow useful computations in practical
situations. Morcover, the paradigm is intuitive, it is casy to visualize the computational effects of
these particular limitations, and the paradigm is a natural way of expressing programs for certain
applications, in particular relationships arising in computer-aided design.

A number of implementations of constraint-based programming languages are presented.
A progression of cver more powerful languages is described. complete implementations are
presented, and design difficulties and aliernatives are discussed. The goal approached, though
not quite reached. is a complete programming systein which will implicitly support the constraint
paradigm to the same extent that 11SP, say, SUpports automatic storage management.

Thesis Supervisor: Gerald Jay Sussman
Title: Associate Professor of Electrical Engincering

This work is dedicated to the greater glory of God Almighty.

Acknowledgements

{ would fike to acknowledge the contributions to this work of the following people and other
entitics, and offer them my profound gratitude:

Gerald Jay Sussman, advisor, collcague, fricnd, who has prodded me when | was stuck, encouraged
me when 1 was depressed, enlightened me when | was blind, complimented me was | was actually
working well, and who is generally a jolly fellow to be around; he cares about his students. He
originally inspired nearly all of the good ideas in this disscrtation.

Richard Brown, Peter Deutsch, Jon Doyle, Ken Forbus, David McAllester, and Howard Shrobe,
who have worked on various versions of constraint systems ov truth maintenance systems at MLLT,
and provided many uscful comments, criticisms, insights, and ideas relevant to this rescarch.

Other members of the MLT. Artificial Intelligence Laboratory or other MLL'T. laboratorics who
have taken an interest in my work and/or generally contributed o the comtortable and intellec-
tually stimulating ambicnce there:; T would like especially to mention Professors Jon Allen, Ed
Fredkin, Carl Hewitt, Berthold Horn, Marvin Minsky, Paul Penficld, and Patrick Winston, and
also Howard Cannon, Danny Hillis, Jack Holloway, Tom Knight, Neil Mayle, Margarct Minsky,
Jonathan Rees, Chuck Rich, and Jon Taft.

The people who have worked on the hardware and software of the Lisp Machine, to make it
the incredibly cfficient and versatile programming environment which enabled this rescarch to be
conducted in a reasonable time; they include Alan Bawden, Howard Cannon, Richard Greenblaty,
Jack Holloway, Tom Knight, Mikc McMahon, David Moon, Richard Stallman, and Danicl

Weinreb.

‘The Fannie and John Hertz Foundation, which provided the fellowship under which this rescarch

was done.

6 Achnowledgements

Donald E. Knuth, Richard Zippel. myself, and others who created and improved the 1§ text for-
matter, which processed the text of this dissertation: and the people at Xerox PARC who produced
the Alto and its software, used o produce the illustrations, and the Dover, which printed the
original hard copics.

The congregation at the First United Presbyterian Church of Quincy, for their fellowship and
support, including Pastor Roger Kvam, Sandy and Allison Willson, Harry and Mary Long, David
and Karen Green. Bob and Lauric Gruel. Bruce and Nancy Rhodes, Wayne Wilson, Alden Drake,
Jcnnifcr Ward, Ruth Lambiase, Bob McCarthy, Ray Comils, 1 .0is Cornils, and many others.

Chuck, the peculiar poodic, who as far as | know st/ barks in the night.

David A. Steele. my brother, who used to keep me up to date on cultural affairs, but now is cultural
affairs (hey, Davet); and his wife, Suzanne Messer Stecle.

Uncle Henry and Aunt Carolyn Damm, and cousin Chrissic, and also Cousin Suc Stecle; it’s nice
to have family,

The Reverend Doctor Guy 1ewis Steele, Sr., and Nalora Steele, my parents, who have provided

unflagging and unbounded paticnce, support, encouragement, opportunity, resources, and just
plain love for over twenty-five difficult years. Thank you, Dad: thank you, Mom.

Cordon Ruthven Kerns and Ruth Kerns, my other parents, and also Donald and David Kerns, and
David and Patty Kerns Auwerda, and Jimbo Kerns and beyond, who have welcomed me as their
own. It’s nice to have family!

Barbara Kerns Steele, my wife. “What we cannot express in words, we must therefore pass over
in sifence.” (Wittgenstein, Tractatus I.ogico- Philusophicus, §7). 1love you, Barbara,

-

Oh. prettily preen the primly prose
That blooms amidst the Snunduy snows
And gloom the glibly gleaming glows
While subtly supping sweet suppose.
—Walt Kelly (1952)

1 Go Pogo
Contents
Acknowledgements L L. L L L L e e e 5
Contents e e e e e e e 7
Figures e e e 12
Fables e e e 14
Chapter One: Introduction 19
1.1, ‘The Constraint Model of Computation 21
L1 Simple statement of relationships constitutes declarative programming . . 22
1.1.2. Constraints usc local deduction technigues to compute solutions 24
1.1.3. Constraint networks can maintain the history of a computation 20
1.1.4. Assumptions provided limited non-monotonic behavior 28
1.2, TheThesis e e 29
1.3. Overviewofthe Dissertation 29
1.3.1. ‘The author had a grand program for solving the entire problem 30
1.3.2. T'he author settled for doing half thoroughly rather than all poortly . . . 30

8 Contents
Part One: Constraints
Chapter Two: Propagation e e e e e kY,
2.1, Alrivial Constraintlanguage o e 37 g
2.2, Implementation of a Trivial Constraint Language 42 :
I3
2.2.1. Cellsarcusedtorepresentvariables 42 !
2.2.2. Constraints are instances of constraint-types 48
2.2.3. Equating of cells links them and propagates values 49
2.24. Constraints arc implementedassctsofrules 52
2.3, Sample Exccution of a Constraint Program 57 |
24, A Diflculty with Division o . . oo 62 ‘
2.5, Summary of the ‘I'rivial Constraint Language 66
Chapter Three: Dependencies o e 68
3.1. ResponsibleProgramso oo e 69
3.1.1. Dcpendency information can be used to explain computations 69
- 3.1.2. Required parameters can be deduced from the network structure 72 4
3.2. Rccording Dependencies e e e e e e e e e e 74
33, Producing Explanations L Lo e 82
3.4. Representing Symbolic Resultsin the Network 89
3.4.1. Subgraphs of the network may be printed as algebraic expressions 89
3.4.2. Choosing a subgraph is guided by dependencics and better-name heuristics 96 #
3.5. Summary of Some Uses for Dependencies oL Lo 102
Chapter Four: Retraction L e 104 i
4.1, ForgivingSystems L. .. e 104
4.1.1. Connccting conflicting cells can cause contradictions 105
4.1.2. Propagation potentially poses problems for predefined pins 111
4.1.3. Erroncous cquatings clicit exccution exceptions cqually casily 116 1
42. Implementation of Retraction Mechanismso o0 oL L 21 '
43, Summary of the Retraction Mechanisms 132 !
Chapter Five: Assumptions e e e 133
5.1. Definition of AssumptionConstructs 134
5.2. ImplementationProblems oo L. 135
5.2.1. Nogood sets can be used to locally record contradictions 135
3

Contents 9
5.2.2. Resolution can derive new nogood sets fromoldones 137
5.3. Implementation of Assumption Mechanisms, 141
54. Examplesofthe Usc of Assumptions 157
54.1. Simplcassumptionsarc persistent 157 :
5.4.2. Oncof assumptions can cxpress and solve the four queens problem . . . 162 ;
5.5. Discussion of the Assumption and Nogood Set Mechanisms 174 Q
b
Part Two: Fagincering ‘
Chapter Six: Efficiency L 181
6.1. Ihe Newlmprovedlanguage 183 J
6.2. ‘I'he New Improved Techniques 186 J
6.2.1. Ceclls eaplicitly record multiple support and cquatings 186
6.2.2. Constraints use arrays indexed by pinnumber L. 192 ‘
6.2.3. Constants are considered an immutable part of the wiring 196
6.24. A qucuc-based control structure aids cfficiency heuristics 196
6.2.5. Generalized algebraic notation can express any network 197]
6.2.6. ‘T'he size of nogood sets can be heuristically reduced L. 198
6.2.7. Statistics counters measure performance L L L L L L L. L 200
L 6.3. The New Improved Implementation 201
' 6.3.1. Symbolic constants provide names for internal marker values 201
6.3.2. Statistics counters make it casy to instrumentcode 203
6.3:.3. Rules are data structures and catalogued inarrays 204
6.3.4. Cells have ficlds that were formerly in repositories 207
f 6.3.5. 'I'hic valuc of a ccll may differ from the value ofitsnode 210
6.3.6. Anewlygencratedcellisitsownpuppet 211
6.3.7. Hash tables store and retricve objects indexed by given keys 212
6.3.8. Constant, dcfault, and parameter cells have dummyrules 215
6.3.9. [Declaration of variables and constraints may requirc housckeeping . . . 217
6.3.10. A qucucis yet another abstract datastructure L. 219 ;
6.3.11. 'The task scheduler simply scans the queuesinorder 223
6.3.12. 'The priority of a rule depends on its properties 224 -
6.3.13. Rulc definitions explicitly specify outputpins 225 '
6.3.14. T'he triggers of a rule must have values whenitisrun . ., 227
6.3.15. Installing a valuc in a pin changes the pin'scell-state 228
6.3.16. Usurping a supplicr simply reverses links from usurper to supplier . . . 232
6.3.17. Signalling a contradiction merely queucs a contradiction task 234

10 Contents
6.3.18. Contradictions must still hold at the time of processing 236
6.3.19. Computation of premiscs also determines summarizations of defaults . . 238
6.3.20. Contradiction processing traces premiscs and chooses aculprit 242
6.3.21. Awakening sclects only relevant rules forquewing L L. 246
6.3.22. Forgetting a cell's value lets friends (or rebels)stepin 248
6.3.23. 'I'hc 1ookup functions scans the constraint-types’s vars array 253
6.3.24. LEquatings arc recorded explicitly and initializelinks 255
6.3.25. Nodc disconncctions can be done by dissolving and reconnecting 260
6.3.26. Destroying a variable or constraint detaches it from everything 265
6.3.27. Primitive constraints arc uniformly defined by defprim 268
6.3.28. Checking the nogood sets can advise rules about forbidden values . . . 276
6.3.29. ‘T'hc why function prints values forbidden by nogoodsets 279
6.3.30. ‘Thcwhy-ultimately function printscell-link infcrmation 282
6.3.31. Thcwhat function uscs the gencralized algebraic form 284

64. ‘TheNewlmprovedExample oo oL, 289
6.5. TheNewlmprovedSummary o 296
ChapterSeven: Correctness Lo 297
7.1, ‘TheStructurcof Nodes e 297
7.2. Constraint-typesand Constraints 299
73. Rules e e e e e e 300
74, TasksandQuCUCS i i e e e e e e e 302
75, NogoodSets i e e e e e 303
76. Userlinterface L e e 304
17, SUMMATY o o e e e e e e e e e e e e e e e e e e e 304

Part Three: Abstraction

Chapter
8.1,

8.2.

kight: Hicrarchy o 309
New Features for the ConstraintLanguage 309
8.1.1. The user can describe networks using the cxpression syntax 310
8.1.2. ‘T'hcuser can define non-primitiveconstraints L .. L. 31
8.1.3. Pathnames may be written is abbreviatedform 313
8.14. ‘The vector construct provides limited iteration 313
implementation of ParsingandMacros o000 316
8.2.1. Macro-constraints arc instances of macro-constraint-types 3i6

8.2.2. Owners can now be constraints or macro-constraints 320

S m—— e el

3
Contents 11
. 8.2.3. Macro-constraints can be created and destroyed . . . L . L L L. L. 321
8.2.4. ‘The the construct can refer to parts of a macro-device 324
8.2.5. A rcad-eval-print” loop processes userrequests L. L L L L L 325
8.2.6. Uscrinput forms are divided into three categories 327
8.2.7. Defining a macro generales a macro-constraint-type, .. 327
8.2.8. Statements are reduced to simple statements L L L L L L L 330
8.2.9. Pathnamces with periods arc onc of many forms of reference 334
8.2.10. Vectorsare casily defined intermsof macros L. L L L. 336
8.3. Examplcofthe Use of Macro-Constraints KR}/ ‘
84. Discussionofthe Macrolanguage 41 ;
Chapter Nine: Compilation 344 j
4
Chapter Ten: Conclusions i vt 346
10.1. ComparisonswithOthesr Work, 347
10.1.1. sketchpad relaxed constraints on geometric diagrams 47
10.1.2. Data flow computations use parallel dircctional devices 347 =
10.1.3. Walt7's algorithm filters scene labels by local propagation 348
10.1.4. Scmantic nctworks propagate symbolictags L. 349
10.1.5. I-reuder’s method propagates by synthesizing higher-order constraints . 349 i
10.1.6. prolag uses chronological backtracking on hornclauses 350
10.1.7. thinglab providces a class hicrarchy and uses pathnames 352
10.1.8. el and ars analyze clectrical circuits by local propagation 353
10.1.9. Truth maintenance systems are general dependency managers 353
10.1.10. A simple constraint language was designed two years before this 355
10.1.11. Other work usingconstraints oo v o ... 356
10.2. Presentand Future Work oL o 357
10.2.1. "Tablescan be done “the obvious way™ or by “algebra™ 357
10.2.2. Recursive constraint definitions require conditional expansion 359
10.2.3. Explanations should take advantage of the macro-call hicrarchy 359
10.2.4. A constraint language should be meta-circular 360 o
10.2.5. Algebra is operating on the network structure L L L L. 36l ' j
10.2.6. ‘T'he system may need control advice fromtheuser 361 '
10.2.7. ‘Techniques are needed for run-time storage reclamation 362
10.3. Contribmionsof ThisRescarch 363

References o o e e e e e e e e e e e 365

Est brilgum: tovi slimici
In vubo tererotitani;
Brogovi sunt macrescul,
Momi rasti strugitant.
—Lewis Carroll

“Gabrobocchia™

Aliciae per Speculum Transitus FIgUI’GS

Transtanion by Clive Harcourt Carruthers (1966)

FIGURE: 2-1.
FIGURLE: 2-2.
FIGURE: 2-3.
FIGURL: 2-4,
FIGURE: 2-§.
FIGURE: 2-6.
FIGURE 2-7.
FiGURE 2-8.
FIGURF 2-9,

FIGURE 2-10.
FIGURE 2-11.
FIGURE 2-12.
FIGURE 2-13.

FIGURL 3-1.
FIGURL 3-2.
FIGURE 3-3.
FIGURE 3-4.

FIGURT: 4-1.
FiGURE 4-2.
FIGURY: 4-3,
FIGURE: 4-4,
FIGURE: 4-5,
FIGURF 4-6.
FIGURE 4-7.

Primitive Constraint Devicesonntegers 39
A Constraint Network for Converting Temperatures 40
Computation of a TemperatureConversion 41
Some Organizations for ImplementingCells 42
Three Fquivalent Cells with ValueFive 4
The Result of the Creating aPinforanAdder 47
The adder Constraint-Typcandanlnstance 50
Opcration of themaxer Constraint 61
A Temperature Conversion Which “Failed™ 63
Constraining 'Ihree Points to be Equally Spaced (@) 64
Constraining ‘Three Points to be Fqually Spaced (i) 65
A Redundant Network for Equally Spacing Three Points 65
A Cycle-Free Network for Lqually Spacing threePoints 66
Multiplc Supplicrs in the Equal-Spacing Network 74
A Dependency Structure for Which premises Takes Exponential Time 84
Constraining Four Pointsto be EquallySpaced 92
Computing Fqual Spacing for lFourPoints 93
Computation of i Temperature Conversion, Using a Default Value 106
Recomputation of a Temperature Conversion 108
Another Recomputation of a Temperature Conversion. 109
A Contradiction in a Four-Point Spacing Network 112
Defeating T'wo Defaults in a FFour-Point Spacing Network 113
Redundant Premises for a Four-Point Spacing Network 114
Surviving T'wo Contradictions a Four-Point Spacing Network 116
12

B

FIGURI: 4-8.
FIGURE 49,
FIGURE 4-10.
FiGURI: 4-11.
FIGURI: 4-12,

FIGURE -1,
FIGURE 5-2.
FIGURE: §-3.
FIGURY: 5-4.
FIGURE 5-5.
FIGURE 5-6.
FIGURE 5-7.
FIGURE §-8.
FIGURY 5-9.
FIGURE 5-10.
FIGURF: 5-11.

FIGURE 6-1.
FIGURL 6-2.
FIGURE 6-3.
FIGURE 6-4.
FIGURE 6-5.
FIGURE 6-6.

FiGuRe 8-1.
FIGURE: 8-2.
FIGURE 8-3.
FIGURE 8-4.

Figures 13

A Partially Dissolved Four-Point Spacing Network 117
Computation in a Partially Dissolved Spacing Network 118
A Four-Point Spacing Network Modified by Reconnection 119
A Uscfully Modified Four-Point Spacing Network 120
A Uscfully Modified Four-Point Spacing Network 121
A Temperature Conversion Network with an Assumption 135
A Temperature Conversion Network, after Retracting an Assumption 135
A oneof Ccll for which No Alternative Works 138
Assuming Zero DoesNotWorko Lo L. 138
AssumingOne DoesNotWorko L. 139
Assuming TwoDoesNotWorko L 139
Causing a Contradiction and Retraction Eventually Works 140
Situations Examined for Four Queens Using Chronological Backtracking . . . 165
Constraint Network for the Four QueensProblem 168
Situations Examincd for IFour Queens Using Non-chronological Backtracking 170
Constraint Network for Making a General Choice 178
Data Structure foraNodewithNoValue 188
Data Structure for a Node with a Confirmed Value 189
Data Structurc for a Node in a Contradictory State 190
‘The Constraint-type gateandltsRules 194
Summarizing Default Cellsinthe Network o .. oL L. 199
UsurpingaSupplier e e 231
User Definitionofthe if Deviceo v oL 312
Pictorial Representation of the Body Prototype fora Vector 314
An Entire Vector, and ItsConnections oL ... 315
One Stage ofaGCDComputation 338

TABLE 2-1,
TABLE 2-2.
"TABLE 2-3.
TABLE: 2-4,
TABLE 2-5.
TARLE 2-6.
‘TABLE 2-7.
‘FanLe 2-8.
‘TAnLE 2-10.
TABLE 2-9,
‘TABLE 2-11.

TABLE 3-1,
TABLE 3-2,
TABLE 3-3.
TABLYE: 3-4.
TABLLE 3-5.
TABLI: 3-6,
TanLe: 3-7,
‘TARLE 3-8.
‘T'anLE 3-9.

TABLE 3-12.

Taner 3-13.

TanLE: 3-10.
‘TanLE 3-11.

The Muon is a Madness.
A Madness of mine.

I nude her of musturd
And mulberry wine.

| gurbed her in silver
And strawberry cheese
And halved her in quarters TableS
(Her quarters do please.)
I crowned her and gowned her
In Love all ashine.
So boot her und shoot her
This Madness of mine.

—Walt Kelly (1959)

The Pogo Sunduay Brunch

11sp Code Defining Cell and Repository DataTypes 45
Creation of Cells, Constants, and Variables 4]
Constraintsand Constraint-Types 49
Referring to Pins of a Constraint Device 49
Fquating of Cells and Propagationof Values 51
A Simple Fracing Mechanism e e 52
Implementation of the Constraint Boxes of Figure 2-1, 53
Definition of Primitive Constraintsand Rules o .. oo 55
Expanded Second Rule of the equal ity Constraint 55
Expanded Definition of the equality Constraint 56
Implementationof contradictionandsete oL 57
lixtra Repository Ficlds for Recording Dependencies0 o o . L L 75
A Constant Cell Is tsOwn Supplier 76
Maintaining Supplicr Components When EquatingCells 77
An Incorrect Implementationof Hquating oo oL o L 78
Implementation of Primitive Constraints with Dependency Information 79
Definition of de fprim Which Saves Rule Infoemation 80
Definition of the Ancestor Relationship between Cells with Values 81
Ocfinition of setc for Handling Dependencies. o 000 v L 82
Caode for why: Generating a One-Step Explanation 83
Calcniation of the Premises SuppostingaValue o . o .. o 84
PFastCalcultionof Premises« . . v v o v v o v i i e e e e 85
Determining Potential Premises foraCellwithNo Value 0 . . o .. 86
Implementation of why-ultimately 87
14

'
i e

Tubles 15
Tasii 3-14. Definition of the what Explanation Function. 95
TABIE 3-15. The tree-form Function and Macros for Numerical Marks 9% j
TABLE 3-16. ‘I'tacing Out a Subgraph of Interest forwhat 98 3
TaBIF 3-17. Copying a Traced Subgraph as aSct of Equations 100 f
Tan 1 3-18. Resctting the Mark Components for tree-form. 102 i
Tant4-1. Implementation of Constantand DefauleCells 122 lr
TAB14-2. Delaying Equating Decisions Until aftertheMerge 123 ‘
Tasi:4-3. Handling Contradictionsinsetc 124 .
TABIF 4-4. Processing and Recovering from Contradictions 125 ,]
TARIE4-5. Retracting Values fromthe Network 127 J
TABi:4-6. A Rewriting of the premises Function e e e e e e e 127 P
TABLE4-T. A Rewriting of the fast-premises Function 129
Tanik4-8. DissolvingaNode—Carefully! 130
TAaniE4-9. DisconnectingaCellfromaNode 131
TABLE S-1. Data Structure Maodifications for Assumptions 142
TABLE 5-2. Implementation of the assume Construct. 143 .
TABLES-3. Implementation ofthe oneof Construct. 144 -
Tant:5-4. TheRuleforoneof 145 ' j
TABLES-5. Looking for Tentative Values for UscasCulprits 146 i
TABLES-6. Constructing and RecordingaNogoodSet 147
‘TABLES-7. Merging Nogood Scts When EquatingCells 148
TABLEES-8. Altering Nogood Sets fora New Repository 149
TABLES-9. Merging I'wo Collectionsof Nogood Sets. 150 :
TABLE 5-10. Forgotten Values May Re-cnable Suppressed Assumptions 151
TanLES-11. Disconnections Wreak Havoc with NogoodSets 152
TABILE S-12. Rapid Destruction of Potentially Invalid Nogood Information 153
TABLE 5-13. Assumptions Are Considered tobe Premises 153
TABLE 5-14. New treeforms Definitions 154
TABLES-16. Constructinga Trecformwitha! 154
TABLE 5-15. Tracing Missing Trecforms and Trecformswith ¢ 155
TanE 5-17. A More Reliable Version of process-setc. 156 !
TABE5-18. A 11SP Solution to the N QueensProblem o o o 162 '
TABLE 5-19. Constraints for the Four Queens Problem () 166
Tantr: 5-20. Constraints for the Four Queens Problem Gi) 166
Tanir: 5-21. Constraints for the Four Queens Problem Git) 167
‘TABLE 5-22. Constraints for the Four Queens Problem(iv). 167

TABLE S5-23. Implementation of the firstoneof Construct 175 '

16 Tables ‘
Tanir5-24, TheRuleforfirstoneof 177
TABLE6-1. Definitions of SymbolicConstants 201 ;
TABLE6-2. Statistics Counter Mechanism L L., 203 '
Tast6-3. Data Structures for Constraint-types, Constraints, and Rules 204 |
TABLE 6-4. Data Structures for RepositoriesandCells 206 1
- Tamie6-S. Functions for Accessing Values of CellsandNodes 209 »
 TABIE6-6. Generation of ReposiwriesandCells 211 E
TaBtr 6-7. Hash Table Definition and Generation 212 i |
TasLE 6-8. Hash Table ookup and Install Operations 213
TABLE 6-9. Dummy Rules for Constant, Default, and Parameter Cells. 215 ! j
TABI 1 6-10. Gencration of Constant, Default, and ParameterCells. 216
TABLE6-11. Declaration of Variablesand Constraints 217
TABLE 6-12. Qucue Data Structurc and Definition. 219 ,
TABLEG-13. QueucOperations v v v v e e e e e e 220 ‘
‘TABLE 6-14. Constraint System Queue Definitions and Task Scheduter 222 ' €
TABLE 6-15. Deciding in Which Queuc to EnqueucaRule. . . . o o oo 00000, 224
TABLE6-16. ApplyingaRuletoaConstraint, 226 :"j
TABLEG6-17. Installing a Computed ValueinaPin(G) 228 v
At 6-18. installing a Computed ValuemaPin(ii) 229
‘TABLE 6-19. Usurping the Throne of the SupplicrofaNode 231
‘Fan i 6-20. Signalling Contradictionso o 233
TABLE6-21. RunningaContradictionTask 235 1
TABtE 6-22, FFast Computation of Premises and Related Quantities. 237 ;
TABLE 6-23. Gathering Premise and Link Information, 239 ‘ ‘
TABLE 6-24. Tracing Premises for a List of Cells, and Unmarking 241 >
TABLE 6-25. Processingof Contradictions o oo 00000 o 242 !
TABLE 6-26. Formation and Installation of Nogood Sets 243 i
TABLEG6-2]. ChoosingaCulprit 243 i
TABIE6-28. AwakeningofRuleso . o oo oo oo 245
TABLE 6-29. Forgetting a Celt's Value and Its Consequences 247
TABLE 6-30. Retracting a Value, and Tracing of Consequences 249 ’
Tastrk 6-31, Forgetting a Friendless King (Very Haiey) . . . 0 0 o 0o 0 oo 0o o 251
TABLE 6-32. ReferringtoPinsUsingthe . . .,o o o oL, 253
TABE6-33. Bquating of Cells and Recording Equatings Explicitly 254
TABEY 6-34. Merging Values and Arranging Cell Links 256
TABLE 6-35. Merging 'T'wo Nodes with Values and Handling Conflicts 257
TABLE 6-36. Altering and Merging of Nogood Sets . . . o . v v v vt e e 258 1

|
3
|
‘.
l
.
‘!

-

Tant ¢ 6-37

TABLE 6-38.
TABLE 6-39.
TABI I 6-40.
TABLY 6-41.
TABIE 6-42.
TABL I 6-43.
Tan I 6-44.
TAnLE 6-45.
TABLE 6-46.
TaBI I 6-47.
TABLE 6-48.
TABLY 6-49,
TABLE 6-50.
TaBIE 6-51.
TABLL 6-52.
TABLE 6-53.
TABLE 6-54.
TABLE 6-55.
TABLE: 6-56.
TABLL 6-57.
TABLLE 6-58.
‘Tan 1 6-59.
TABLE 6-60.

TaBLL: 8-1.
TABLE 8-2.
‘TanLE 8-3.
TABIE 8-4.
TABII: 8-5.
TABLI: 8-6.
‘TABLE 8-7.
TABLE 8-8.
TABI L 8-9.

‘T'AnLI: 8-10.
Tanii: §-11.
TABIE 8-12,
TABLE 8-13.

Tubles 17

TestingAncestorhood L o Lo oL 259
DissolvingaNode e 260
Detaching. Disconnecting, and DisequatingCells 262
FFast Expunging of Nogood Information, 264
Destroying the ValucofaGlobalName 265
Definition of Primitive Constraint-types (i) 266
Definition of Primitive Constraint-types (). 267
Definition of Primitive Constraint-types (iii) 268
The assume, oneof, and firstoneof Constructs, 270
Definition of Primitives L .o Lo Lo 2N
Expansion of the Definitionofgate 273
Definitionof Rules oo oo 274
Expansions of the Definitionsof Twogate Rules 275
Checking Whether a Value is FForbidden by a Nogood Set 276
Filtering a Sct of Pussibilities Using NogoodSets 278
Implementation of thewhy lFunction 279
Explaining a True-Supplicr, and Printing Forbidden Values 280
Implementation of why-ultimately 282
locating Desired Premises for an UnboundCell 283
Implementationofwhat L Lo oL 284
‘I'racing Out an Algcbraic Expression in the Network 285
Determining a “Good™ Artificial Supplier oo 286
Constructing the T'raced-out Algebraic Expression 287
Checking for a Good Global Name, and Unmarking, for tree-form. 288
Macro-constraint-types and Macro-constraints 316
New Printing FormatforCells 318
Construction of Pathnames for Cellsand Devices 319
The Best Name fora Pin IsltsPathname 0o L. 319
Creating and Destroying Thingso oL 321
Generating a Constraint or Macro-constraint 323
Looking Up Parts of a Macro-Constraint 324
‘The Top-1.evel *Read-Eval-Print™ Loop for the Constraint System 325
Discriminationof Inputlforms oL L 0oL 327
Processing a Macro Definition L0000 oL 328
Generating a Macro-Constraint-Type 329
arsing Statements L L L L Lo 330

Parsing an “Algebraic Expression™ oL oo 3

,___..‘..AA*_._,M

e A =

18

TanLE§-14,
TARIE 8-15.
TABLE 8-16.
Tant i 8-17.
TABLE §-18.
Tant1:8-19.

Tables
Parsing a ReferencetoaThing oo 0oLl 334
Parsing a Pathname Written withPeriods 34
Parsing a “Simple” (Ha!)Symbol oL, 135
ParsingaGlobalSymbol, 336
Parsinga the Fxpression, 136
ParsingavectorStatement.o oL 7

e Lt o

Oh. roar a roar for Nora,
Nora Alice in the night,
For she hus seen Aurora
Borealis burning bright.

A furore for our Nora!

And appluud Aurora scen!
Where. throughout the summer, has Chapter One

Our Boreulis been?
—Walt Kelly (1953)
Yen Ever-Lovin® Blue-Cyed Years with Pogo

Introduction

l’r IS BY NOW a finnly cstablished picce of the computer science folklore that ail sufficiently

powerful models of computation arc the same because they are all equivalent to a Turing
Machine (this is known as Church’s thesis). Nevertheless, some models of computation are more
tractable than others for certain purposcs, and this is perhaps as much a matter of psychology as
of computer science. Some models cvoke mental images and analogies which others do not, and
these images and analogics guide onc's thinking about a problem. (ndeed, some models become
so firmly entrenched in the folklore, or scem to correspond so naturally to the structure of certain
classes of problems, that onc’s instinctive approach when faced with similar problems is to turn to
those modecls, and so such models become paradigm solutions for such problems. For example, the
notion of a finite-state machine is so closcly associated with the parsing of strings that whenever
a problem of the form, “Scan a stream of things looking for some cumulative property™ arises,
my first thought is to frame the solution as a finite-state machine; therefore | assumie that the
sulution may be of this form, and then try to fill in the details, and usually this approach works and
occasionally not.

Robert Floyd has remarked [Floyd 1979]:

... continued advance in programming will require the continuing invention, claboration,

and communications of new paradigms.

‘This dissertation is an expocition of one such paradigm: constraints. In this paradigm programs
consist of statements of rclationships among symbolically named quantitics which are to be
satisfied. What distinguishes a constraint-bascd language from others is the particular limitations

19

20 CnArIER ONE INTRODUCTION

which arc placed on the deductive process which manipulates the relationships in order to produce
values.
In the cited work Hloyd gocs on to say:

When a progromming kinguage makes @ paradigm convenient. 1 will say the language

supports the paradigm. Whoen a language makes o paradigm feasible. but not convenient.

I will sty the hainguage weuk/y supports the paradigm. ... mwost of our kanguages only

weakhy support smudtancous sssignment. and do not sapport coroutines at all ... Fven

the paradigm of structured programnimg s at best weakly supporied by many of our

programming languages.

‘The constraint modcel of computation is not supported by any programming language in existence
today: the closest approximiation is probably PRO1OG {Warren 1977b]. The rescarch | shall discuss
here is an attempt to build a constraint-based language from the ground up. This includes
definition of appropriate primitives. means of combining primitives, run-time support, means of
abstraction, and a simple compiler.
Again quoting from Floyd:

A paradigm at an even higher Jevel of abstraction than the structured programming

paradigm is the construction of a hicrarchy of bnguages. where programs in the highest-

level language operate on the most abstract objects, and are tumshaled into programs on

the next lower level language.

‘This is the paradigm used in the construction of the constraint system presented here. 1t was built
on top of a LISP system, the dialect known as Lisp Machine 11se {Weinreb 1979]. developed at
M.LT. In this dissertation | will not only describe the capabilities of the constraint system, but also
describe its implementation, making remarks along the way on the techniques used to build large
systems quickly and rcliably. These technigues include data abstraction, debugging tools, defensive
programming, and most particulitly building on an cxisting system rather than re-implementing
cverything from scratch. 1L1SP provides the user with a data structure printer. a parser, hashing
of identifiers to data structures, atomatic storage management, and «a host of run-time facilitics
(arithmetic, scarch procedures, sorting, ctc.) right off the bat: the incremental cost of constructing a
new language is small.
In summary, | will discuss three things in a somewhat mingled fashion:
(1) The constraint model of computation, and some associated imagery. This will include a static
relational model for the meaning of constraints, as well as computational models.
(2) Mecthods of implementation, including consideration of alternatives. Possible data structures
and control structures are compared.
(3) Techniques for construction of large systems, using the constraint system as an example. This
point receives somewhat less emphasis in the text, and is represented largely by side remarks

and footnotes, and demonstrated by examiple.

e m———

F=)

!
4

§1.1 The Constraint Model of Computation 21

1.1. The Constraint Model of Computation

There are two images, or analogics, which §associate with constraints which make them useful
to me. Neither of these is unique to constraints, but the combination is.

The first image 15 that a constraint is a declurative statement of relationship. 1 1 place a
constraint that the quantity named a is less than the quantity named b. then there is a known
relationship between the two. Similarly, if the sum of three valucs z, y. and z is constrained to be
zero, then there is a stated relationship among the three. This relationship can be viewed in more
than one way: for example, one might find convenient for some purposes the asymmetric view that
z is minus the sum of the other two.

Predicate caleulus and related description methods also model computation by stating
relationships. Predicate-calculus-based programs such as PRO1OG ([Warren 1977b]; sec also
[Kowalski 1974]) provide both a relational model for interpretation of the meaning of the program,
and a computational model for the algorithmic evolution of the canonical form for this meaning
(the “output™).

‘The second image is that a constraint is a computational device for enforcing the relationship. 1
mean for the word “device™ o be taken quite literally, 1 visualize a constraint as a little plastic box
with metal pins coming out, just like the dual-in-line (1p) packages that digital integrated circuits
come in. Just as a 7400 series NAND gate will force its output pin to be the logical negation of the
logical product of its input pins, so a hypothetical 74000000 scrics NAND constraint would constrain
its three pins to obey the NaND relationship. A constraint does not have designated “inputs™
and “outputs”, however. At this level of abstraction | say nothing about how the relationship is
enforced. except to say that the enforcement mechansisms are (inostly) local to the device. | then
visualize many of these fittle boxes being combined by running wires between their pins; these
wires represent primitive cquality relationships. A constraint program can be drawn very much like
an clectrical circuit diagram, (Indeed, it was rescarch into analysis of electrical circuits that inspired
the current furry of interest in constraints at M.L'T.[Sussman 1975] [Stalliman 1977]; and constraints
in Sketchpad [Sutherland 1963] were also drawn as little ““devices™ connected by “wires™ to their
arguments.) As in an clectrical circuit, alt the devices are conceptually active at once: they operate
in paralicl.

It is this computational metaphor that distinguishes constraints from, say, PROLOG. Both
PRO1.OG and constraints are based on a statesnent of relationships, but they differ in the additional
imagery. PRO1OG restricts statements to Horn-clause form, and then likens such clauses o proce-
dure declarations and imposcs a backtracking procedure-calling metaphor. Constraints provide the
metaphor of interacting discrete physical devices. Other metaphors may also be useful.

——————

22 CHAPTER ONE INTRODUCTION

The data flow model of computation [Dennis 1973] [Dennis 1975) also takes a view of pro-
gramming as the wiring together of devices which can then perform computations with as much
parallelism is permitted by the wiring structure. Constraints arc like data How in that onc can
visualize data as flowing from device to device along wires. The two differ in that data flow devices
arc directional, having specified input pins and output pins; constraints are (in general) adirec-
tional. Data flow can be considered to be a (perhaps very important) special case of the constraint
paradigm.

Analog computers also perform computations using devices which are wired together. They
operate on a (conceptually) continuous domain, however, represented by voltages or currents, |
focus here on constraints as a model of discrete computition, on discontinuous data domains.
When discrete methods must be used rather than, say, relaxation techniques. the computational
strategies are radically different.

1.L.1. Simple Statement of Relationships Constitutes Declarative Programming

The advantage of a relational semantics for a programming language is that a static meaning
can be assigned to the program independent of any computational model. "This allows various im-
plementations to be judged by a uniform standard, and a new implementation nced not reproduce
exactly the inessential quirks of an old one, Morcover, the program may well be casier to under-
stand. and even (it is fashionable to say this nowadays) to prove. !

It has been argucd [Pratt 1977] {Kowalski 1979] [Clark 19807] that a program is best divided
into two components, the competence and performance components (Pratt’s terminology, bor-
rowed from Chomsky). The competence component contains factual information-—statements of
relationships—which must be manipulated and combined to calculate the desired result. The
performance component then deals with the strategy and tactics of the manipulations and combina-
tions. The competence component is responsible for the correctness of the program; the perfor-
mance component is responsible for efficiency and termination. As an cxample, the following facts
suffice for computation of the greatest common devisor r of two numbers £ and y (the example is
from Pratt, but the formulation is minc)z:

1. Note also that it is casicr to start with a good semantics and then implement it than to begin with an implementation
and then derive (f one can!) some kind of post-hoc semantics (typically of the oyd-Hoaie style) to justify it.

2. This formulation does not consist simply of universally quantified relationships aboul ged along with a request
to find ged(r, y): such is the nature of the formulation in [Pratt 19771 This formuldation s somewhere between
that and a deterministic algorithm. in that it cxpresses the idea that a sequence should be computed, that clements
of the sequence may be computed according 1o a limited number of specificd rules. and that some clement of the
sequence will be the result. Thus compared with Pratt’s version, this already outhines much of the strategy. The
freedom remaining is the precise choice of rules used o compute the sequence.

§1.1.1 The Constraint Maodel of Computation 23
Vi>2 (zi=zi1—z9)V(zi=z0—2z_,)
r= || whereziy, =10

(Proof of formulation, using induction: certainly ged(z,2)) = ged(z,y). Now suppose that
ged(zi—y,z—2) = ged(zx,y). Eitherz; = 2,y — 2y or z = 2y — z__,. In the first
case ged(z;,z,_) = ged(zi—y — zi—2,2zi—1) = ged(2z -y, 2,-9) = ged(z, y). and the other
casc is similar. ‘Therefore for all £, ged(z;, 2,) = ged(z, y). Negative numbers do not matter,
because we define ged(—u, v) = ged(u, v). Morcover, the fact that ged(u, 0) = u means that
r = ged(z, y).)

Now this sct of rules is certainly competent; if a valuc is ever found lor r, it will certainly be
the ged of z and y. Morcover, the declarative nature of the rules makes it casy to reason about
them. However, the matter of performance is another thing. A strategy is nceded for imaking the
choice at cach step about which way Lo subtract. Forz = 15 and y = 12, onc valid 2 scquence is

15,12,3,9,6,3,3,0
whercupon r = 3. But another valid sequence is
15,12,-3,9,12,3,9,6,—3,9,6,3,3,0,—3,3,6,3,3,0

whercupon r = 3 (the rules don’t say onc must use the first zero valuc in the z sequence!). ‘The
computation may even fail to converge:

15,12, —3,15,18, —3, 21, 24, —3, 27,30, —3, 33,36, —3, 39, . ..

‘The behavior of the performance component cannot simply be left to chance; it can have a
significant cffect on the computational behavior of the system. (In some sense the only interesting
ditference between an n log n Quicksort and an n? Bubble Sort is performance.)

We will posit the hypothesis that we would like, in our programming, to concern ourselves
first with competence (correctness; “what™), and only then. if at all, worry about performance
(cflicicncy; “how"™). This implics that a programming language ought to allow the division of a
program into the two separate components. Ideally, the computation could proceed, at some cost
perhaps, without any advice on performance; but the more advice the programmer could give, the
more cfficient the computation could proceed. (Compare this with the declaration of data types in
cxisting programming languages. In most of the zllgcbraic3 languages the declaration of data types
is inextricably bound up with the rest of the program, cven though the information is in many cascs

3. 1t used to be that “algebraic™ meant “AL.GOl-like™ or perhaps “IFORTRAN-like”, but nowadays il scems 10 mean
“PASCAIl-like”, for PASCAL, is the currently popular, though poorer. re-invention of the cxcellent ALGOL wheel.
Perhaps in another ycar, continuing the trend, the term will mean “ADA-like™.

-~

]
i
t e
|
)
[
.
Y

24 ClAPIER ONE INTRODUCHION

redundant. To my mind that is onc of the great advantages of interactive languages such s BASIC,
APl and 11SP: the programmer can proceed without all the redundant baggage to the heart of the
matter, and then go back later to add the declarations as documcentation or advice. In MACLISP
[Moon 1974), for example, one ofien writes a program without any declarations, and then adds
numerical declarations later to advise the compiler how to go about getting 1ORTRAN-like speed
for numerical code {Fateman 1973] {Stecle 1977]. This is not to say that the programmer should
not have the possibility of declarations in mind as he first writcs the program. | would suggest,
however, that programs written to try out an idca are not necessarily best written using the same
mcthodology with which one crafts the finished product.)

As alrcady mentioned, some other programming languages provide a means for this scpara-
tion of concerns. ‘They are pretty much alike in their expression of competence: one sugaring or
another of predicate logic. (Kowalski states [Kowalski 1980]: *There is only one language suitable
for representing information—whether declarative or procedural—and that is first-order predicate
logic.™ He may be righl.4) lowever, predicate-calculus-based programming anguages differ in the
automatic computational methods applied for perforimance purposes.

In order that a constraint language behave as declaratively as possible, we will posit this design
goal (there will be others later):

Design Goal 1
As far as possible, the computational state of a constraint system should depend only

on the relationships stated so far, and not on the order in which they were stated.
(However, this order-independence is required only up to any ambiguities in the
relationships.)

A constraint program should have a clear declarative semantics unrelated to questions of or-
dering and process. This is not to say that the results of a constraint program may be unaffected
by the order in which things happen—but if ordering does matter, then it is because of an essential
(possibly intentional) ambiguity in the stated relationships, in which case the system is explicitly
free by fiat to make any choice among those possible.

1.1.2. Constraints Use Local Deduction Techniques to Compute Solutions

"The very advantage of predicate calculus-like formalisms is that they inherently make no com-
mitment as to computational technique; therefore predicate calculus is not a complele program-
ming language. As noted in [Bobrow 1980};

[Predicate logic) is inadequate as o caleulus because it does nol make it perspicuous to

model issues of memory and resource-limited reasoning . ..

4. Kowalski goes on to siy. “There is only onc intelligent way to process information—and that is by applying
deductive inference methods. The Al community might have realised this sooner if it weren't so insular.” ‘This seems
a triflc strong to me.

e - —

i~

S — e e

STy ™

P

§1.1.2 The Constraint Model of Computation 25

And in [Sloman 1980):
When o new formlism is little more than a syntactic variant of predicate logic. translation
is a useful debunking exercise. 1t is also useful in pusing a challenge 1o clarify what
the tanstation fuils w0 capture. in other cases. More o the point. in some cases. would
be transhation intlo a good gencral-purpose programming fanguage. ¢.g. 1ISP or POP2
with records or property lists and o few gencral-purpose library routines, | shall start
being impressed by new formalisms when they are associated with powerful new useful

techniques. {1ialics his.]

It is computational technique, rather than syntactic notation, which distinguishes predicate-
calculus or relational programming languages. The difficulty with general theoremn provers is the
combinatorial explosion which results from simply trying to deduce all possible conscquences from
a sct of statements. There must be some means of limiting this explosion in a useful way. Such
limitations may of coursc prevent a computing system from arriving at a potentially deducible
result, either absolutely (by totally preventing consideration of certain deductions) or relatively
(by postponing the relevant deductions beyond an cconomically feasible amount of other com-
putation). 'The challenge is to invent a limiting technique which powerful enough to contain the
cxplosion, permissive cnough to allow deduction of useful results in most cases of interest, and
simple enough that the programmer can understand the consequences of the limiting mechanism.
It is this last point which encourages the system designer to base the limiting mcechanism on some
casily grasped metaphor.

In this dissertation | shall discuss the technique of local propagation. One can view the
notion of local propagation from the declarative point of view: local propagation amounts to using
only one relationship at a time to do arithmetic on known valucs (as opposed to using algebraic
techniques for deriving new relationships by combining old ones). Of course, most programming
languages share this same property; “algebraic” languages are really arithmetic languages, and only
the symbolic mathematical systems such as MACSYMA, REDUCE, and SCRATCHPAD truly perform
algebra. A constraint-based language would be somewhere between the two types, differing from
arithmetic languages in that the direction in which relationships were used would be determined
dynamically, on an as-nceded basis. As an cxample, in a constraint language, onc would state
a = b+ ¢, or perhapsa — b — ¢ = 0, or some such thing; this statement might then be used
computationally to derive b given a and c. In an A1GO1-like Tanguage one must explicitly write
b :== a — c. This adirectionality is a property shared by symbolic algebra systems and deductive
thcorem provers; but then again, they arc oriented more towards algebra than arithmetic. By
constrast, a constraint system avoids using the full power of algebriic transforms.

Local propagation is perhaps more casily visualized in terms of the discrete device image,
however. ‘Think of a 74000083 full adder constraint device, in a five-pin package, the pins being
a. b, ¢, Vqq. and ground. Whenever any two pins have numbers on them, a value is computed

e ———— e = ..

= e A e e

-

26 CHAPTER ONE INTRODUCTION |

for the third pin. (It is partly by this mecans that the relationships are enforced; whenever a value
is forced by others, it is imincediately asserted.) If all three pins have numbers, and they don't
obcy the relationship, then the device pushes back hard somchow, trying to make the numbers I
fit its relationship, or perhaps the device goes up in smoke if it doesn’t succeed. By analogy,
consider a resistor, which takes fwo numbers, called voltage and current—which happen to be !
represented in an interesting physical way—on cach of its two terminals, and enforces certain

e em e o e ma

numcrical relationships—also, as it happens, expressed in a physical way—among these numbers.
An ideal resistor operates on a conceptually continuous physical domain, but we shall be interested
here in discrete domains. ‘The mental image of a physical device is apt, however; its operation is
local in that it operates only on information immediately to hand on its pins. All the devices are of
this form, and by cooperating in parallel they can produce global effects.

Onc would expect that the constraint model might be a good model for multiprocessor com-
putation for exactly the same reasons that data flow would be. Because cach device computes
when, and only when, the relevant information is available, a network of cooperating devices can
exploit all possible paratlclism in the computation. Constraints have the additional advantage that
no prior commitment nced be made by the programmer as to which pins of a device are input pins t
and which output, so a single network can be used to perform many different computations (not
necessarily all at once, though). ‘This generality of course has its price: a real hardware constraint '
architecturc will be much more complicated than a data flow architecture. o

A e

[SRDE NP S S e

Although the constraint-system implementations discussed here are in fact single-processor ‘]
simulations, we would like the constraint model to serve as a mode) for parallel computation by b
machines cach performing locally defined tasks. Thercfore we posit another design goal: 3

Design Goal 2

As far as possible a constraint-bascd system shail perform its computations on the basis
of locally available information only.

We shall indeed achicve this goal for computations in which no conflicts occur; but that is 1
of course the simple case. As we shall sce, the constraint model is most useful for analyzing and
dealing with conflicts.

1.1.3. Constraint Networks Can Maintain the History of a Computation

Because it is not determined a priori whether a given device pin will be used for input or out- .
put, neither is it detcrmined in which direction data will flow along a wire (conncction, cquality). '
Suppose that associated with cach wire is a bit, indicating in which dircction data has flowed last;
the value of the bit does not matter if no data is on the wire. ‘Then, assuming that no conflicting

valucs have arisen on a wire, when the computation has scttled down (all possible local deductions
having been madc), various nodes of the network will have valucs, and the wires with valucs

§1.13 The Constraint Model of Compuiation 27

will form a dirccted graph, with their bits indicating the dircctions, describing the history of the
computation. Such a graph will constitute the particulur data flow program traced out dynamically
by the computation on an as-needed (or rather, greedy) basis. Because the graph indicates which
values depend on which other values, it is said o encode dependency information (dependencies for
short).

Such a history can be used for many purposes. {t can provide explanations of the computation.
{t can also be used to resolve conflicts. If there is a loop in the network, then a value may propagate
around the loop and compute a new and different value for the same guantity. In continuous-
domuin networks (such as clectrical circuits) this is typically used 1o provide feedback effects which
by relaxation cause the conflict to be resolved. Note that relaxation is of necessity a global, not
local, process, because it is used to resolve conflicts caused by global propertics of the network (the
individual devices being assumed to be locally consistent). In the discrete-domain networks to be
discussed here relaxation is replaced by the global pracesses of backtracking and resolution. 3

T'he current work at M.L'T, on constraini-based computation was inspired by the need to
analyze physical systems and to aid the enginecring processes by which such systems are designed.
This dissertation began as an cffort to provide a basis on which o build a design system for in-
tegrated circuits. The intention was to provide the underlying mechanisms for recording design
constraints, in the form of rules by which parts of the designed object interact. For integrated cir-
cuits, some of these rules are geometric in nature, some clectrical, some logical, and some on more
than one of these levels, ‘The intention was to provide a uniform mechanism by which rules and
values could be recorded, deductions made, and consequences asserted in a way that would interact
well with the physical descriptions of the design. Morcover, the mechanism should automatically
detect conflicts, and provide information to aid in explaining to the user the reason for the confiict.
While the results of this rescarch have not yet been incorporated into a design system, similar
mechanisms have been used in design systems such as Dacdalus {Shrobe 1980]. My intention is
that the rescarch presented here should serve as a basis for building a sclf-contained constraint-
based language to scrve as a host system on top of which to build design systems. The simple
implementations presented here are similarly built on top of a host LISP system. The constraint
Tanguage will provide certain services to the implementor of a design system, such as recording
design constraints and detecting and resolving conflicts. just as 11SP provides certain services such
as automatic storage management, which records given data in a structured form using a lincar
memory, and detects the implicit relcase of data structures and crrors caused by incorrect aceess to

structures.

S. Relaxation and resolition are not interchangeable, but complementary. being applicable to different situations.
A full constraint-based system would probably need 10 use both techniques: this was done in THINGLAB [Borning
1979]. for cxample. In this disscrtation, however, | arbitrarily focus only upon discrete domains, becuse relaxation

has alrcady been more throughly explored.

e ——— e L

28 ClAPTER ONE INTRODUCHON

In this role as a design utility, a constraint system ought to have the property that it works if
one gives it but a little information, and works better if one gives it more information. That is, the
morc relationships it has to work with, the more can be computed. [Hence a third design goal;

Design Goal 3
A constraint-based system should, so far as possible, be monotonic. “Ihe more is
known, the more can be deduced, and once a value has been deduced. knowing more
truc things ought not to capriciously invalidate it.

1.14. Assumptions Provided Limited Non-monotonic Behavior

The word “capriciously ™ is included in Design Goal 3 for a reason. ‘There are some situations
where it is uscful to make assumptions, in order to provide “default” behavior. For example, one
might want to say that an object can be oriented in any of scveral ways by rotation and reflection,
but that some onc orientation may be assumed unless explicitly proven otherwise. 'Vhis is necessary
10 be able to draw a picture of an incomplete design, for example. 1f one knows that an inverter is
part of a circuit in a particular position but the designer hasn't yet specified whether it faces left or
right, it is unsatisfying simply not to draw it; it might be better drawn in some default orientation,
perhaps with an annotation to that effect.

Unfortunately, introducing assumptions violates the principle of monotonicity, because infor-
mation computed on the basis of an assumption may no longer be valid when the assumption is
overridden. ‘T'herefore providing more information may cause fewer (though sounder) results to be
known. We will permit this limited form of non-monotonicity, but nevertheless desire the results
of computations 1o be relatively stable; hence a value, once computed. should not be retracted by
caprice, but rather only because new information has definitely rules it out. Likewise, if cither of
two values is possible and onc is (arbitrarily) chosen, then that value remains until rules out, rather
than oscillation occurring.

An assumption can be expressed as a deductive rule of the form “Deduce £ = y provided
that the system remains consistent.” Now of course consistency is a global property. and so an
assumption mechanism also violates the design goal of locality. However, the rule can be phrased

o

operationally as, “If onc of z and y is known and the other not, deduce z = y,” which is local,
with the understanding that in the event of conflict a general global mechanism for conflict resolu-
tion will take over. This is in fact how assumptions arc implemented in the systems described in this
disscrtation.

Al lcast one dependency-recording system [Doyle 1978a] [Doyle 1978b] [Doyle 1979] has been
so general as o allow deductions 10 be made on the basis of anyrhing being unknown. Such a

system has grossly non-monotonic semantics which leads o some logical diflicultics. There has

been some work done [McDermott 1979] on formalizing the semantics of non-monotonic logics.

X
e

e e e ramea -

T Ottt e e

e

§1.3 The Thesis 29 4

‘These difficultics are avoided here by confining the non-monotonicity of the system to a fairly well-
behaved special case. An assumption mechanisin allows the constraint system to make gucesses
about possible extensions Lo the solution computed by local propagation, and thus provides a
limited means of overcoming the limitations of locality.

1.2. The Thesis

o Constraints are a model for computation which has both a static declarative semantics and an in-

e e i e "2

1
tuitively appealing visualization as physical devices which perform dynamic local computations.

e ‘I'he constraint paradigm places limitations on the deduction process which are stringent cnough J 4
to prevent combinatorial explosion, loose enough to permit interesting computations to be per- i
formed, and sufficiently comprehensible to allow the programmer to predict the clfects of the
limitations,

o Constraints provide a natural way to express and enforce the relationships of designed objects,
and thercfore a constraint-based programiming language is a suitable base for building systems
for computer-aided design (CAD). ‘3

o A constraint system can casily rctain information about the history of the computation which
can be used to produce explanations of the system’s behavior, and to trace the root causes of
conflicts.

e Constraints include data flow as a special case. A suitable compiler can reduce a constraint

program to a sct of data flow programs, onc for cach possible partitioning of the program’s
terminals into inputs and outputs.

o [.ocal propagation as the normal mode of computation, plus dependency-directed backtracking 4
for resolving global conflicts, can serve as the implementational basis of an expressively power- !
ful and potentially very clficient computational language.

e A constraint-based languagc can be cfliciently implemented by letting the structure of the im-
plementation correspond in a direct way to the structure of the physical device imagery for
constraints.

. -

1.3. Overview of the Dissertation

This overview has two sections. One describes how this documcent was supposed to be or-
ganized (and there are reasons for describing this, for it provides perspective on what was done and
part of what remains to be done). The other section of course describes how it is organized.

30 CiiaPtER ONE INTRODUCHON
1.3.1. ‘The Author Had a Grand Program for Solving the Eatire Problem

When I set out to pursuc this rescarch. 1 had a plan, as many do. This disscrtation was to
have been divided into four parts with the folowing outline (this is nof the actual outline for this
dissertation), in which cach italicized heading represents the title for one chapter:

Origistal {Not Current) Outline
Part . Constraints.
Propagation: implementing adirectional devices which propagate valuces.
Dependencies: yecording computation histories and giving explanations. i
Rerraction: using dependencics to resolve conflicts. f

e ———— e e e

Assumptions: limited non-monotonic computation based on guesses.

Graphics: drawing constraint networks; constraints on graphical objects.

Tables: handling compound objcets such as arrays, whose values may be only partly known.
Part 1. Hicrarchy.

Abstraction: packaging networks to look like single constraint devices.

Closures: devices as data objects: constraints on constraints: meta-circularity.

Lemmus: using hicrarchy to guide the production of explanations.
Part 111, Algebra

Notation: an abbreviated nested expression notation.

Slices: aiding propagation through multiple redundant points of view.

Transformations: pattern-directed invocation; automatic network augmeatation; loop-breaking.
Part IV, Ffficiency

Controf: explicit control; propagation of desires; meta-constraints; heutristic assumptions.

Specialization: casc-splitting in the primitives to handle common situations quickly.

Compilation: producing primitive devices from network specifications.

Reclamation: garbage collection on the network: reclaiming reconstructible historics.

(I do not cxpect the reader to comprehend the complete significance of all ceyptic notes above,
They are explained later in the disscrtation.)

As the research progressed, however, it became clear that within imposed time limits [had
the choice of examining all of these topics in a cursory manacr, or cxploring a subsct of them
thoroughly. | chose the second option.

1.3.2. ‘The Author Scttled for Doing Half Thoroughly Rather ‘Than All Poorly

This dissertation docs not by any mcans cncompass all of the material in the preceding
outline, but that which is covered here is covered thoroughly. All but the last chapter (Conclusions)
concerns existing constraint systems that have been demonstrated to work. Al the code for all

§13.2 Overview of the Dissertation 3

these systems is included in this dissertation and documented in the text.® Not all the text concerns
low-level details of the.code, however. Fach chapter is typically split into a high-level discussion
of issues, and a low-level discussion of implementation. 1 have attempted to arrange the text so
that the reader may read the entire dissertation; or just the English text and not the code; or just
the text, and skipping those scctions which contain code. All sample computer input and output ap-
pearing in the text are actual transcripts of the operation of the systems presented and documented
in the text. ’

This dissertation is divided into three parts. A condensed outline and a summary of cach part
and chapter follow. The arrangement of the material is vaguely similar to the originally proposed
outine. The material in the above outline which does not appear below is discussed at some length

in the chapter on Conclusions.

Brief Qutline of Dissertation
Yart 1. Constraints. Propagation. Dependencies. Retraction. Assumptions,
Part 1. Engincering. Efficiency. Correciness.
Part WL, Abstraction. Hierarchy. Compilation.

Full Outline of Dissertation

Part I. Constraints. [n this part a constraint language is defined incrementally and the system
for exccuting it implemented by stages. Fach chapter builds on the work of the previous one, until
by the end of the part a moderately sophisticated constraint system has been constructed.
Propagation. A minimal toy constraint language is defined; it permits the staternent of equalities
and some simple arithinctic relationships. An implementation representation is chosen, and 11SP
code for a constraint interpreter is presented. Sample runs of a trivial constraint program are
cxhibited, and some problems and deficiencies discussed.

Dependencies. Mechanisms are introduced for recording dhe history of a computation. Utility
procedures for extracting explanations from computation histories are demonstrated. Ways of using
the network as a symbolic (algebraic) representation of a quantity are discussed.

Retraction. Conflicts can arise in a network in a number of ways; all arc a consequence of global
propertics of the network. Hence a global process, dependency-directed backtracking, must be
used to determine the precise causes of a conflict. Mceans of choosing which premise to retract are
considered.

Asstmptions. Constructs are introduced for advising the system on when to make assumptions or
“educated gucesses™ about the value of some quantity, Such gucsses may be inconsistent because
of global considerations, and so nogood sets are introduced as a mechanism for recording in a
locally accessible way the global reason for forbidding a guess. An implementation of assumption

6. The code is writien in {isp Machine tISP [Weinreb 1979), a dialect of 1ISP descended from MACT ISP [Moon
1974) Constructs which are peculiar 10 this dialeet are described along the way.

32 CHAPTER ONE INTRODUCTION

mcechanisms and automatic retraction of incorrect assumptions s presented. A large example (the
n queens problem) is discussed and sohved using a constraint program. which is shown 10 he
potentially a more efficient technique than the usual chronological backtracking method.

Part Il Engincering. The first part is concerned prinvanly with Language definition and a clear
and simple implementation which demonstrates the concepts involved. However, that implemen-
Lation is not particularly efficient, and is not obviously correct. Phis part contains a complete re-
implementation of the same kinguage, with issues of efficiency and correctness in mind. The entire
state of the system is made explicit as data structures, rather than letting part be implicit in the
program state of the 1sp code which implements the system.

Efliciency. A complete re-implementation is presented o the Tanguage defined in the first part.
Multipie reasons for a believing a value are explicitly recorded. 'The computation rules are pre-
catalogued to permit cfficient dispatching. A queue-based control structure is introduced: the
queucs contain tasks tw be scheduled, and most tasks compute for only a limited time, enqueuing
other tasks. While priority ordering of tasks is introduced for efficiency. the tasks may be correctly
scheduled in any order. Effoit is expended to make it possible to characterize the state of the system
at the time a new task is to be sclected; this is intended to ease a demonstration of correctness. The
state of the system when contradictions are outstanding is still well-defined, and both explanation
procedures and modifications to the network are designed to operate correctly even when the exist-
ing network contains contradictions. The queuc-based structure s similar to that used by multi-
prograauning schedulers, and is intended to mimic the standard single-processor simulation of a
multi-processor system, thereby making it casier to transfer the ideas to a true multi-processor

implementation.

Correctness. 'This chapter contains no programs. It reflects on the implementation of the previous

chapter. While no attempt is made to provide a rigorous proof of the implementation, a large

number of the necessary invariants arc presented to sketch a possible approach to a proof. ‘The

program is very lurge and would take considerable cffort to prove rigorously. However, attention to

the intended invariants stated here certainly aided the implementation process and served o detect

mnany difliculties.

Part 11§, Abstraction The language developed in the first two parts has primitive devices and a

mcans of cornbining them. but no mcans of abstraction for packaging up a combination to make it

look like a prinmitive device. In this part we define a macra mechanism for this purpose.

Hierarchy. "The “Ratness™ of the language is relieved by intraducing hicrarchy in two ways. One '
is a macro mechanism by which a network can be packaged up and made to look like a primitive

device: this induces a macro-call hicrarchy. 'Fhe other is a parser for a generalized nested algebraic

notation. so that arithmetic expressions of roughly the usnal sort can be used to notate constraint g
nctworks. The parser also implements conmvenient abbreviations,

Compilation. When a macro device is instantiated, a copy of the defining network is produced '

i i et nmat cae it it s i

§13.2 Overview of the Dissertation 33

to perform the actual computations. Hence there are no computation rules associated with macro
definitions, but only with truc primitive devices. In this chapter a compiler is described which
from the network for a macro deduces all possible computation rules of interest and constructs a
definition for an cquivalent true primitive device.

Conclusions. I'he rescarch described in the dissertation is summarized. Tentative results not con-
incd in the dissertation proper are discussed. as well as foresecable extensions to this work. Work
by other rescarchers is discussed and compared with this rescarch,

34

CUAPTER ONE

[I'his page intentionally left blank.}

ot

INTRODUCTION

Part One

Constraints

While constraints are superficially smilar 10 fish. in actuality they are more
closely reluted 1o dlligators: they siap up their inputs greedidv. Scaly green
alligators swim lazily among the cypresses. evoking imuges of astronauls working
in in silent. black spuce. their feet (almost non-cxistent in the case of alligators)
dungling in whaiever direction chance oceasions. inasmuch as gravity is of little
relevance in the void.

In space. us elsewhere. except in swamps. and other places which are also
exceprions 1o the rule. there are. gencrally speaking. no alligators. or for that
matter their ostensible und ostentaiious cousins. the ferocious (so people seem 1o
think. in thewr dreams and funiasies. although 1 nust say 1 cannot personally
vouch for this notion as a hard and established fact) crocodiles. This is. however,
a subject for fierce debate.

—Anonymous

36

The meanin’ of the mornin’
‘Midst the moanin® of the moon
Bespeaks a specious speck of speech

That quurters past the Noon. \
—Wault Kclly (1952))
! Go Pogo b

Chapter Two

Propagation

rﬂ‘m; CENTRAL IDEA behind constraint-based systems is the notion of locul propagation—that
a number of small processes arranged in a network, cach processing information locally
and Scnding’ results on to neighbors, can cooperatively produce a useful global effect. The direction
of computation is determined dynamically: a constraint attempts to enloree a cetationship among
several parameters without any prejudice as to which are inputs and which outputs. It is willing to
compute any parameter from others when those others have been determined.

In this chapter we introduce a trivial constraint language. This language is exceedingly weak, 1
andt hardly useful for practical purposes. [t is intended as a toy for didactic purposes. It has pur-
poscly been pared to the bone, stripped of all features not directly nceded to illustrate the principle i
of local propagation. ‘The implementation of this language is likewise trivial, and consequently
suffers certain incfliciencics (which will be remedicd in later chapters).

2.1. A Trivial Constraint Language

The data objects of our language are the integers.

itis possible to speak of an object without knowing preciscly what it is by using a name for it.
Such a namc is a variable. A varable can be declared so:

(variable x)

37 :

38 CHAPTER 'T'WO PROPAGATION

Then x is understood 0 denote an integer, though which integer it is may not yet have been
computed. [the name x is mentioned later, it is understood to refer to this variable.

An integer constant may be explicitly mentioned in the language by using the constant
construct:

(constant 43)

In cffect this declares an anonymous variable and also declares that the object named by this name-
less variable is the integer 43. Of coursce, this is not very useful by itself: because the variable has
no name, it cannot be referred to later. However, the form (constant 43) itsclf scrves as a
denotation of the variable, as will be scen.

Two variables may be declared to denote the same object by using the == declaration;

(== x y)

As we shall sce, the computational cffect of this will be that when a value is computed for one
variable, that will also become the value of the other variable. As a special case, one can assign a
specific value to a variable by cquating it to a constant:

(== x (constant 43))

‘This states that the valie of x is 43 (and also that the valuc of y is 43, since (== x y) isin
effect).

One can also state more complex relationships among variables by using constraints. We draw
a constraint relationship as if it were a little TTL device.! Logic devices, however, “compute”
in only one dircction—some pins only accept inputs and some only produce outputs—but our
constraint boxes generally treat cach “pin™ as bidirectional. Fach pin of a constraint device is a
variable: it has a name, and can be cquated to other variables.

Our languagc provides an assortment of devices for stating relationships among integers. In
describing them, we list the name of the constraint type, the nances of the pins, and the relationship
enforced by the constraint. ‘The pictures we will use for these constraints appear in 1figure 2-1.
adder {a,b,c} ¢ = a -} b (alternatively,a = ¢ — borb = ¢ — a).
multiplier {a b, c} ¢ = a X b(alternatively, @ = ¢/b or b = ¢/a). Note that ¢/b is not

defined in this language if b = 0 or if ¢/b is not an integer, (When
b = 0 then ¢/b is many-valued (indeterminate) when ¢ = 0, and
no-valued (contradictory) when ¢ 7% 0.)

maxer {a.b.c} ¢ = max(a, b).

1. Indeed. the inspiration for this computational paradigm was the mental imagery associated with clectrical circuits.
[Sussman 1975] [Sialiman 1977]

TN

§21 A Trivial Constraint Language 39

A — ' A— Pl
5 +)-c N b B A—=|-s

Adder Maxer Equality

P

*x c A _D, c |
B ——1 B ﬂ A __r_—l__ B

Multiplier Minner Gate

FIGURE 2-1. Primitive ('()-nSlminl_l)L‘\iu‘s un lmcgsrs.

minner {a, b, ¢} ¢ = min(a, b).

equality {p.a.b} p = (a = b), where the truth value for p is represented by 0 for
Jalse or 1 for true. as in API..

gate {p.a, b} p = (a = b) (alternatively, (a 72 b) =~ p).

No primitive is provided in the language for subtraction, becausc that is simply another way of
viewing an addition constraint; similarly for division. More gencerally, a single constraint box can
represent a given relationship and aiso all of its inversions. {or cxample, a single cxponcentiation
box could represent all of z = y*,z = log, z, and y = Iz,

1S InTeReStInG TocOnSider the inversions of other operators as well—certainly they must
be considered in order to provide a complete implementation of a constraint box for that operator.
For example, what is the inversion of ¢ = max(a, b) which finds b given a and ¢? 1.ct us denote
this by aremax. a. Then we can provide the following definition:

¢ ifa<<e
arcmax.a = ¢ unknown ifa=c
crror ifa>c¢

Note that sometimes the value cannot be computed because the inputs are inconsistent (as in the
casc of dividing by zcro), and so there is no consistent value. At other times the inverse may have
multiple consistent valucs, and so no unigue result can be computed. This occurs for arcmax.a
when a = ¢, for the result can be any integer not greater than ¢. A more familiar example is that
the square root operation is double-valued for positive inputs. We will return to this subject later,

If we have several constraint boxes, we can “wire them together™ by connecting their pins,
Since cach pin is a variable, two pins can be connected by cquating them as variables. We indicate
this in a diagram by drawing lincs among the pins, according to the usual conventions of logic

s T ———

i nadualis

4
I 1
“
k

40 CuAPTER 'TWO PROPAGATION

FAHRENHEIT CENTIGRADE

OTHERMULT MULT

FiGureE2-20 - A Constraint Network for Comverting Temiperatures,

L — e —— -~ d

diagrams, Textually, we notate the interconnection of several constraints in two steps. First we
declare and name instances of constraint devices:

(create add adder)
(create mult multiplier)
(create othermult multiplier)

This creates an adder named add and two multipliers named mult and othermult. Next we
state the connections among the pins:

add) (constant 32))

add) (the a othermult))
othermult) (the c mult))
othermult) (constant 5))
mult) (constant 9)))

— o~~~ —
[

"
.~~~
[ad
=
@

a o0 o

We have used the the construct to refer to pins. 'The expression (the x y) refers to the pin
named x of the device named y, and may be read “the x of y™.

[.ct us also declare two variables fahrenhe it and centigrade and connect them to (i.c.,
make them alternative names for) two pins:

(variable fahrenheit)
(variable centigrade)
(== fahrenheit (the c add)})
(== centigrade (the b muit))

-

§2.1 A Trivial Constraint Language 41
FAHRENHEIT CENTIGRADE
-40 —
C + ‘
N
ADD OTHERMULT MULT
FiGuRE 2-3. Computation of a Temperature Conversion.
1 The result is shown in Figure 2-2. This network in fact represents the familiar temperature conver-

sion constraint between the variables fahrenheit and centig rade.?

5 X (fahrenheit — 32)
9

centigrade =
Supposc now, for example, that we state that cent igrade is —40.
== centigrade (constant -40))

This results in the following sequence of computations:

» From: centigrade = (the b mult) = —40
(the a mult) =9
the constraint mult deduces (the ¢ mult) = —40 X 9 = —360.
» From: (the ¢ mult) == (the ¢ othermuit) = —360
(the b othermult) =5
the constraint othermult deduces (the a othermult) = (—360)/5 = —72.
» From: (the a othermult) = (the a add) = —-T72
(the b add) = 32
the constraint add deduces (the ¢ add) = (—72) 4- 32 = —40.

This computation is picturcd in Figure 2-3.

"I'his computational technique is called local propagation. iach deduction is performed locally
by a single primitive constraint device. from data immediately available to it. ‘This results in a step-
by-step propagation of values from one device to the next.

2. ‘this cxample was borrowed in spirit from [Borning 1979).

1
3
|

|

42 ClHAPTER TWO PROPAGATION

A A
B F 8 F
[+ E [od E
@ 9 | @ 3
FiGURF 2-4. Some Organizations for Implementing Cells.

In summary, the statements permitted in our trivial constraint language are;
e (create constraint-name constraint-lype), to create a constraint instance.
e (variable variable-name). to declare a global variable.
e (== thing-1 thing-2),to cquate two variables,
The forms that may hc mentioned in a == statement are:
o variable-name, the name of a declared global variable.
o (the pin-name constraint-name), which means the pin pin-name of the created constraint

constraint-name.
e (constant integer), which cffectively means an anonymous variable with infeger as its as-

sociated value.
The constraint-types provided by the language arc adder, multiplier, maxer, minner,

equatity, and gate.

2.2. Implementation of a Trivial Constraint Language

Here we discuss a complete implementation of our trivial constraint language in 11SP (more
specifically, Lisp Machine rise [Weinreb 1979]). First we describe the data structures used to
represent variables and values: then the representation of constraints: after that, the “evaluation
mechanism™ which cffccts computation by local propagation; and finally, definitions of primitive

constraints.

2.2.1. Cells are Used to Represent Variables

A cellis a data structurc used to represent a variable. It is used not only to contain a value, but
to record the cquating of the variable to other variables.

L2

ENUIVETPRP S TN

[OPE P

T P P U

§2.2.1 Implementation of a Trivial Constraint Language 43

Equating of variables is transitive. Whenever a value is determined for one variable, then all
variables cquated to it must also receive that value, and all variables equated o them, and so on.
"This fact constitutes a propagation requirement.? Variables transitively cquated obviously form an
cquivalence class. This class can be organized in one of several ways for purposes of propagation.
(a) All equivalences are cxplicitly recorded. Fach cell contains the set of all cells to which it has

been directly equated; call this set its neighbors. When a cell receives a value, the value is
propagated Lo its neighbors, which will recursively propagate it. (See Figure 2-4a.)
On a sequential machine this technigue requires space lincar in the number of equivalences
(which may be anywhere from lincar to quadratic in the number of cells): constant time to add
an equivalence: and time linear in the number of equivalences (between linear and quadratic
in the number of cclls) to propagate a value throughout the class. A recursive propagation
procedure is required.
(b) The transitive closure of the cquivalence relationship is explicitly recorded. Each cell contains
the sct of all cells to which it is transitively equivalent. If an cquivalence is added between two
cells not of the same class, then every cell of cach class must have all cells of the other class
added to its sct. When a cell receives a value, then it sends the value to cach neighbor, but no
recursive propagation is required. (See Figure 2-4b.)
On a sequential machine this requires space quadratic in the number of cclls; time lincar in the
number of cells to add an cquivalence; and time lincar in the number of cells to propagate. The
propagation procedure is simpler, however, being iterative.
Note that in the previous technique all the scts of ncighbors would be identical if a cell were
considered its own ncighbor. ‘Therefore let this sct be represented only once and he shared
among all cells. Furthermore let the value not be propagated at all, but be stored in only one
shared place. (Sce I'igure 2-4¢.)

(c

~—

On a scquential machine this requires space lincar in the number of cclls; time lincar in the
number of cells to add an cquivalence (because a new set of neighbors must be constructed—
the perhaps simplistic assumption here is that it takes lincar time to take the union of two scts
of neighbors); and constant time to propagate.
We choose the fast option for reasons of performance and pedagogy.? (The time to create n cquiv-
alences is still quadratic in n (because cach one can be lincar in the number of equivalences alrcady
madec). It would be possible to usc ecven more clever techniques but we shall forego that here.)

1.ct us therefore define a cell to be a data structure with four components;

3 FEquality is thercfore a special kind of constraint which also performs local propagation of values. It could be
represented in the same way as other constraints. but for the fact that we intend to use cquality itscll as the means
for connection of devices. llence cquality must be haadied specially to avoid infinite regress.

4. And perversity? We shall see that this cleverness makes things dillicult later. when compound objects and
dependencies are introduced. We shall then have to choose another representation.

i Ll ke o e D N ekt

4 CHAPIER TWO PROPAGATION

A
Cc
B Y] Y
CELL-11 CELL-27
_t + NIL NIL
CELL-NAME CELL-43 ? FAHRENHEIT
CELL-OWNER - -
CELL-PARTNAME Cc
CELL-REPOSITORY (]
A
REP-BOUNDP TRUE
REP-CONTENTS 5
C e nCa st
FIGURE 2-5. Three Fquivalent Cells with Value Five,

(1) An identification id, used primarily for uscr mcta-language interaction and debugging. (This
component is not essential to the computational ability of the system.)

(2) An owner, which may be null (indicating that the cell represents a globally named variablie), or
may be a constraint (in which case the cell is a pin of that constraint).

(3) A name, which is a global name if the owner is null, or the pin namc if the owner is a
constraint.

(4) A repository, which is a data structure representing things shared with other cells,

Names of variables should be unigue; hence all the cells with the same owner should have distinct

namcs, and all the global cclls should have distinct names. As an exceptional special case, all

constants have a null owner and the name “?",

Similarly, we define a repository to be a data structure with three components:

(1) A tlag boundp, indicating whether or not a value has been computed for this equivalence class
of cells.?

(2) The contents, which is the computed valuc if the boundp Mag is true.

5. Instead of having a sceparate flag. one could simph hine a reserved value (nil or “unbound”™ or something)
indicatc the absence of an explicitly compuied value. This technique can save space i an cflicient implenientation.
We choose to use a flag here for clanty.

—_—— — -

!‘
I

§221 Implementation of a Trivial Constraint | anguage 45

(deftype repository ((rep-contents ()} (rep-boundp ()) (rep-cells ‘(}))
(formal stream "<Repository™:[Ts™;: “S7]7@[for ~{7S7t,”}"I>"
(rep-boundp repository)
(rep-contents repository)
; (cell-ids repository)))

{(defmacro node-contaents (cel)) *(rep-contents (cell-repository ,cell)))
(defmacro node-boundp (cell) :(rep-boundp (cell-repository ,cell}))
(defmacro node-cells (cell) -(rep-cells {cell-repository ,cell)))

(deftype cell (cell-id cell-repository cell-owner cell-name)

(format stream "<7S7:[72¢7; (7S of "S)7]: T:[Teno value™;TST>"
' (cell-id cell) .

(cell-owner cell)

(cell-name cell)

(cell-owner cell)

(node-boundp cell)

(node-contents cell)))

(defun cell-ids (rep)
(forlist (x (rep-cells rep)) (cell-id x)))

Tane: 2-1. 1ISP Code Defining Cell and Repository Data Types.

(3) ‘the cells. a list of all cells which have this data structure as its repository. Thus this constitutes a
set of back-paintees. Fram aay cell all cells to which it is equivalent can be discovered.

Iigure 2-§ shows three cells which have been equated and given the value S. One cell is the ¢ pin

of an adder constraint; the one with name ? is a constant (which was probably the source of the

valuc 5); and the onc with name fahrenheit is a globally named cell.

[t is often convenient to consider a repository and all its associated cells to be a single object;
we shalt call such a collection a node, because it corresponds o a node of a network graph in the
pictorial representation. A nade is the conjunction of two or more ares (edges, wires). Alternatively,
a node represents an equivalence class of variables. We can draw a fine distinction by speaking of

a valuc as being associated with a node or with a ccll; the former case is a simple statement that

all the cells of the node have the same value, but in the latter case we draw specific attention to an

important relationship between the value and that particular cell of the node. "4
‘The 115P code in Table 2-1 defines ce11 and repository to be LISk user data types. Each

deftype definition of the form "

(deftype name (component-1 componem-2 ...) printer)

defines a new user data type called name. 'This will be a record-style data type with a fixed number

of named components, ft implicitly defines a nuniber of functions to perform construction, selec-

tion, and predication for that type. Also, the method for printing objects of that data type is ;
specificd. Once the type definitiomabove has been made:

S e R T e R R P T RSELRE E TR A e en ET EE ETee—— Tv

46 CHAPTIER TWO PROPAGATION

o (make- name) will create and return a new data structure of type name.

e (name-p x) is apicedicate truc iff x is of type name.

e (require- name x) signals an crror if x is not of type name. This is useful for crror-
checking and in-code documentation.

e Each component-j in the definition specifies the name of onc record component. The component-
Jcan be of cither the form cname or the form (. cname initval) . In cither case cname is the
name of a component of the data structure, and is the name of a selector function (actually a
11SP macro) for extracting that component from an object. Thus (cname x) will return the
contents of the ename component of the object x. which must be of type name. Moreover, the
form (setf (cname x) newval) will change the cname component of ¥ to be newval. 1f
the first form for component-f is used. then the component value of a newly created instance of
type name is undefined: otherwise, the component is initialized to initval.

o ‘lhe form printer is used by the 11sP system to print objects of type name. Within the printer
form the variable name names the object to be printed and the variable stream namcs the
stream to which 1o send the output. 'The details of the format function are unimportant here;
examples of printed objects will appear later.

As an example, the definition of repos itory in labie 2-1 defines the function make-repository

of no arguments, which gencrates an object of type repository with three components
named rep-contents, rep-boundp. and rep-cells. [t also dcfines three functions
rep-contents, rep-boundp. and rep-celis which extract conponents from objects of type
repository. Saying (setf (rep-contents x) 43) tkes the value of the 11Sp variable
x (which must be a repository) and alters its rep-contents component to be 43. ‘The func-
tion repository-p is a predicate which can be appliced to any 1isP datum, but is truc only
of repositorics. The procedure require-repository signals an crror if its argument is not
a repository. Finally, a repository with no valuc and two cells in its list of cclls might print as
“CRepository for CELL-34,CELL-36>".

‘Tabie 2-1 defines not only the data types cel1 and repository, but also some cxtra mac-
ros for dealing with nodes. We do not define a separate 11isP data type called node; instead, any
cell of a node may serve to represent the node. The repository of @ node holds data belonging
to the node, and so the macros get the repository of the given cell and then cextract the desired
information from the repository. Thus, for cxample,

(node-contents x) — (rep-contents (cell-repository x))

and similarly for node-boundp and node-cells.

0 As 2 matter of progranming style, T have wnten intialization forms) the program depends on those initial
values: components with no defaull values specified in the deftype declaratson must be mitiahized by the program
before being read. Another quirk of my programming style is that | write ()} to mean the constant “false™ and * ()
10 mean the constant “null st Some 1ISP systems do not adentify the null st with the atomic symbol NEL.

e

§221 Implememation of a Trivial Constraint Language 47

(defun gen-cell (&optional (name ’'?) (owner ()))
(and owner (requirq-constraint owner))
(let ((c (make-cell))

(r (make-repository))

(n (gen-name ‘cell)))
(setf (cell-id c) n)
(set n c)
(setf (cell-owner c) owner)
(setf (cell-name c) name)
(setf (cell-repository c) r)
(push ¢ (rep-cells r))
c))

(defun constant (value)
{let ({cell {gen-cell)))
(self (node-contents cell) value)
(setf (node-boundp cell) t)
cell))

(defmacro variable (name) *(setq ,name (gen-cell ’/,name)))

Tai 2-2. Creation of Cells, Constants, and Variables,

{ The global LISP symbol CELL-43 ADDER-27
VALUE CELL »
PAINT NAME | "CELL-43"

ETC. E f*

CELL-1D
CELL-OWNER
CELL-NAME C
CELL-REPOSITORY []
y
REP-BOUNDP FALSE
REP-CONTENTS NiL

REP-CELLS .--;[{__Z

FIGURE 2-6. The Result of the Creating a Pin for an Adder.

Some utility procedures for generating new cells are shown in ‘Table 2-2. The function
gen-cell generates a new cell with given name and owner (if omitted, then the name is ?
and the owner is null). A non-null owner must be a constraint (this is checked and enforced
by the call to require-constraint in gen-cell). A new name of the form cell- nnn

48 CuaPtiR TWO PROPAGATION

is created for the cell; this is a (global) 11sP variable which receives the cell as its value. Fhis
fact is of no consequence in the constraint computation proper, but is useful for meta-linguistic
and debugging purposes. A repository s also ercated for the cell and linked up to it: thus cvery ’

newly created cell constitutes a new node unto itself. Figure 2-6 shows the result of the call

(gen-cell ‘¢ adder-27). :
Saying (constart 5) will gencrate o new cell whose value is 5 (and whose houndp flag ‘

- . . : !

has been set true!).” Saying (variable foo) will cause the global 11SP variable named foo to F
|

have as its vatue a cell whose global name is also foo.

2.2.2. Constraints are lustances of Constraint-Types

Just as in implementations of ordinary programming lkinguages one conveniently divides a

procedure into a constant part (the program text) and a variable part (parameters). so it will be 1
convenient o sphit off the constant part of a constraint. We will call this the “constraint-type™. A
constraint-type contains the “program text” (rules for computation in various circumstances), its |

own name (for identification purposes), and the names of parameters.

Any given instance of this constraint-tipe we call a constraint. Such an instance refers to its
constraint-type for the sake of the constant information the latter contains. 'The constraint also has
a list of parameter “values™ which correspond to the parameter names in the constraint-type. ‘These
“values™ are actually cells used to contain the values. Finally, cach constraint has a generated id and
a global user name in the same way cach cell does.

Table 2-3 gives definitions for the data structures constraint-type and constraint.
The function gen-constraint creates an instance of a given constraint-type. 1t invents a name
for the constraint instance:; if the name of the constraint-type is bazoTa, then the name of the
instance will be bazola- nnn. 1t also creates new parameters cells to serve as pins. [Figuie 2-7
shows the data-structure representation of an adder,

In Vable 2-4 is the code for implementing the the construct for referring to the pins of a
constraint. ‘The implementation is in layers. First, the macro the is purely a bit of syntactic sugar
for a call to the functon *the. to avoid having o write a quote mark.® The function athe in
turn calls Tookup 1o do the real work, signalling an crror if 1ookup fails to locate the pin. Now

7 the remon for using the constant construct i o constramt Janguage s purely pragmanc: we wish 10 use the
standard 18P evaluaton 1o do s muach work s possible for us by confoimmng 1o @ few testichons we can arrange
for all construct of our Linguage o be exceutable 18P code with the proper effeet: this saves us the work of writing
our own kinguage nterpreter (in much the same way that conforming o the usua) parenthetical 1ISP syatax saves
us the work of writing an wput paner. because we can simphy use the sandard HIS® funchon read)) we were
willing 10 wiite our own interpreter. then that ntapreer could unambiyuously interpret an inleger to mean a cell
contaming that mteger. for cxample

8 this is an cxample of wanting 11SP to do the work without fully accommodating TSP syntay - Macros allow a
slight bending of the rules.

§223 Implementation of a Trivial Constraint L anguage 49

(deftype constraint-type (ctype-name ctype-vars (ctype-rules ’()))
(format stream “<Constraint-type “S>" (ctype-name constraint-type)))

1

(deftype constraint (con-id con-pame con-clype con-values) |
(format stream "<T@[7S:7]7S>" (con-name constraint) (con-id constraint))) i’

l

t

(defmacro create (name type) *(setq ,name (gen-constraint ,type /,name)))

(defun gen-constraint (ctype) r,
(require-constraint-type ctype) 1
(let ((c (make-constraint)) o

(n (gen-name (ctype-name ctype))))
(setf (con-id ¢) n)
(set n ¢)]
(setf (con-name c) name) i
(setf (con-ctype c) ctype)
(setf (con-values c)

(forlist (var (ctype-vars ctype))
{gen-cell var c)))

c))

TapLe: 2-3. Constraints and Constraint-Ty pes.

”" .
(defmacro the (x y) +(sthe ’,x ,y))

(defun =the (name con)
(require-constraint con)
(or (lookup name con) (lose "™S has no part named ~S." con name)))

(defun lookup (name thing)
(require-constraint thing)
(do ((names (ctype-vars (con-ctype thing)) (cdr names))
(celis (con-values thing) (cdr cells)))
((nrull names) ())
(and (eq (car names) name) (return (car cells}))))

Tani £ 2-4. Referring to Pins of a Constraint Device,

lookup mecrely scarches the list of parameter names in the constraint-type of the constraint, and if
the given name is found it returns the corresponding cell.

-

2.2.3. Equating of Cells Links Them and Propagates Values

In §2.2.1 we saw that cvery newly created cell has its own associated repository, and so is a
minimal-sizc node. More generally, of course, every cell must always have a repository, which may
be shared with other cells to form a larger node.

{
I

50 CHarirR Two PROPAGATION

e e i e

The constrainl-type ADDER

cTyPE-NAME | ADDER

CTYPE-VARS l—-—b—lﬂ I—I—

CTYPE-RULES ,

The constraint ADDER-27

CON-1D ADDER-27
ADDER-RULE-19 ADDER-RULE-21
CON-NAME ADD
ADDER-RULE-20
CON-CTYPE [

i
covvmns [et——>[[T+ |
i

I
]

The symbol CELL-43 The symboil CELL-44 The symboi CELL-45
[, [[]

"CELL-43" “CELL-44" "CELL-45"

1 1 ‘ 1
} ——1r % — Y } _‘lwr

g ."TL" —-
A B C «
[] »]
Y Y
FALSE FALSE FALSE
NIL NiL NIL

0 £ F

FiGuri:2-7. The adder Constramt-Type and an Instance.

When two cells are equated, then one repository is no longer needed. For simplicity and sym-
metry we shall simply throw them both away and create a new one, about which a node containing

all the cells of the two input nodes is built,

§2.23 Implementation of a Trivial Constraint 1.anguage 51

(defun == (celll cell2)
{require-cell celly})
(require-cell cell2)
{or (eq (cell-repository celll) (cell-repository cell2))
{let {{(r (make-repository))
{cb1l (node-houndp cellil))
(cb2 (node-boundp cell2}})
(setf (rep-boundp r) (or chl cb2))
(setf (rep-contents r) (merge-values celll cell2))
(setf (rep-cells r) (append (node-cells celll) (node-cells cell2)})
(Ve ((newcomers (if cbl
(if cb2 '() (node-cells cell2))
(if ch2 {node-cells cellt) ()))))
(dolist (cell (rep-cells r))
(setf (cell-repository cell) r))
(dolist (cell newcomers)
(cond ((cell-owner cell) .
{ctrace "Awakening 7S because its 7S got the value ~S.°
(cell-owner cell)
(cell-name cell)
(rep-contents r))
(awaken (cell-owner cell)))))
‘done))))

(defun merge-values (celll cell?)
(require-cell celll)
(require-cell cell2)
(let {{(vall (node-contents celll))
{val2 (node-contents celi2)))
(cond ((not (node-boundp celll)) val2)
((not (node-boundp cell2)) vall)
((equal vall val2) vall)
(t (lose "Contradiction between ~S and “S." celll cell2)))))

{(defun awaken (con)
(require-constraint con) i
(dolist (rule (ctype-rules (con-ctype con))) 1

(funcall rule con)))

TABLE 2-5. Fquating of Cells and Propagation of Values.

Table 2-5 shows how two cclls are cquated. ‘The function == takes two cclls, and if they
arc not yct equivalent it creates a new common repository for them. This repository will have a
valuc if either of the input nodes had a value. Morcover, if both nodes had values, then when
they arc cquated the values must coincide. ‘The contents for the new repository are calculated by
the function merge-values, which mercly decides which node’s value to usc, and if both have
values checks that they are cqual, signaling a contradiction otherwisc.? The new repository’s sct
of cells is the union (which must in fact be a disjoint union) of the sets of cells for the two cells’
repositaries. The newconters are defined to be those cells which formerly had no value but will

il

9 When new features are added o the language later, merge-values will have the more complicated task of
merging (wo structured objects, 1aking some attributes from cach value.

52 ClarPrER TWO PROPAGATION

(declare (special stracings))
(setq stracings t)
(defun trace-on () (setq =tracings t))
(defun trace-off () (setq stracings ()}))
(defmacro ctrace (string . args)
+(and stracings (format t "7%;|71@{":}" ,string ,Gargs)))

now have avalue because of the new equivalence. ‘Fhere can be neswcomers only if exactly one
node had a value, in which case the cells of the other node are the newcomers. !9 After all the cells
involved are hooked up to the new repositary, the owner (if any) of cach cell is awakened. The
function awaken when applied o a constraint runs all the rules associated with that constraint,
telling cach rule which constraint instance was involved (because the rules of a constraint-type are
shared among all instances).

The ctrace statement is included purely for debugging purposes. 1t prints a formatied mes-
sage so that the inner workings of the systen can be traced. The 1ise code for ctrace is shown
in Table 2-6. The arguments to format are rather cryptic. but an obvious feature of the ctrace
facility is that it can be turned offY The functions trace-on and trace-of f sct and clear the

global tracing flag,

224. Conctraints Are Implemented as Scts of Rules

‘Fhe implementation of primitive constraint devices is hest seen by example. ‘Fable 2-7 con-
tains the 115P code for the devices whose symbols appeared in Figure 2-1. Fuch is expressed in
teris of a special macro de fprim;

(defprim name pin-numes

(input-pins-1 rule-body-1)
(mput-pins-2 rule-body-2)

(inpur-pins-n rule-body-n))

‘This defines a constraint-type called name which has parameter names pin-names. Each rule has a
list of input pins and a picce of code 1 {0 exceute when those pins all have values. (This restriction
is simply a convenient filter which all rules desire. Recall that the function awaken given in ‘Table
2-5 runs all the rules for a constraint. We shall sce that defprim provides the code to cheek for

10 Again. when the task of merge-values wili be to merge two stractured objects, the cells of bork nodes may
be newcomers. We will see this later.

11 “Ihis code is not wnitten in the constraint inguage. but in the implementation language: these definitions are for
primitive constraints. Tater we shall consider the definition of non-primitive constraints.

e e —— e .

e e -

Pt

§224 Implementation of a Trivial Constraint Language 53

(defprim adder (
({(a b) (setc ¢
((a c) (setc b
({(b c) (setc a

(defprim multiplier (a b c)
({(a) (and (zerop a) (setc c 0)))
((b) (and (zerop b) (setc c 0)))
({(a b) (setc ¢ (s a b)))
((a c) (and (not (zerop a)) (zerop (\ ¢ a)) (setc b (// c a})))
((b ¢) (and (not (zerop b)) (zerop (\ c b)) (setc a (// c b)))}))
¢(defprim maxer (a b c)
((a b) (setc ¢ (max a b)))
((a c) (cond ((< a c) (setc b ¢c))
((> a c¢) (contradiction a c))))
((b c) (cond ((< b c) (setc a c¢))
((> b c) (contradiction b c))}))

(defprim minner (a b c)
({a b) (setc c (min a b})))
((a c) (cond ((> a c) (setc b c))
((< ac) (contradiction a c))))
({(b c) (cond ((> b c) (setc a c))
((< b c) (contradiction b c)))))

(defprim equality (p a b)
({(p) (or (= p 0) (= p 1) (contradiction p)))
((a b) (setc p (if (= ab) 10)))
({p a) (and (= p 1) (setc b a)))
((p b) (and (= p 1) (setc a b})))
(defprim gate (p a b)
({p) (or (= p 0) (= p 1) (contradiction p)))
((a b) (or (= a b) (setc p 0)))
((p a) (and (= p 1) (setc b a)))
((p b) (and (= p 1) (setc a b))))

TABLE 2-7. Implementation of the Constraint Boxes of Figure 2-1.

cach input ccll having a valuc.) Thus we implement our non-directional constraint boxes in terms
of a dircctional language such as LISP.

Consider the definition of the adder constraint. It specifies three rules. When any two values
arc known, the third can be computed by the rulese — a4+ b, b — ¢ —a,anda ~ ¢ — b. The
form (setc ¢ (+ a b)) mcans“sctcell ¢ tothe valucof (+ a b)".

ook now at the definition of multipdier. It has rules which compute new values condi-
tionally, For example, a valuc for ¢ can be computed from a alone provided that a is zero.
Similarly, computing b from a and ¢ is conditional on being able o express the result as an
integer (that is, the remainder (N ¢ a) must be zero), The LIsP value produced by the rule-body

computation is ignored; only the setc construction specifics new values for cells.

54 CHaPTER TWO PROPAGATION

Nextreflect upon the definition of maxer. When a and ¢ arc known, then as we saw in §2.1
there are three cases forcomputing arcmax..a. [fa << ¢ then b «— ¢; if a = ¢ then b is unknown;
and if @ > ¢ then it is not a matter of computing b at all: it is simply a contradiction, a violation
of the constraint. This is all expressed in the sccond rule for maxe r(the casc a = ¢ implicitly
holds if both cond tests fail). 'The form (contradiction a c) signals that a contradiction
has occurred. and that the values of cells a and ¢ are at fault.

Digression There as another implemeniation strategy which does not require the use of setc at all, which
was used i the constramt system reported in [Steele 1979]: that paper did not describe the technigue,
however, and theretore it s onthined here. 1 is assumed that cach rule computes a value for exactly
one eldl and that ths value s compated by the rule-body: thus the 11sP value of the rule-body actually
is used. Fach rule s therefore defined by a hist of input cells, a rule-body. and an output cell. There
are wo global varables s1oses und sdismisss, whose values are distinguishable from any value
normally computed by a rule. If the value of a rule-body is that of «Toses. then a contradiction is
signalled (the assamption being that it s precisely all the input cells that are ot fault). If the value is
that of sdismisse. then no value is specified into the output cell. The defintion of maxer using this
technigque would be:

(defprim maxer (a b c)
(c (ab) (max a b))
(b (a c) (cond ((< ac) c)
((> a c) »losesr)
(t sdismisss)))
(a (b c) (cond {((< b c)c)
((> b c) sloses)
(t sdismisss))))

One advantage of this technigue is that one is required 10 cover all cases explicitly. On the other
hand. it nuy require: duplication of code if the same 1ests are used in rules for setting more than one
cell (which, however, is not the case for the constraints of Table 2-7). Also. cach rule s required 10
specify an output pin, which for some rales may be irrclevant. Consider the first rule of equal ity in
Table 2-7, for example: it merely pertorins a consistency check on the pin p. It never computes a new
vitlue; the only possible outcomes are contradiction or dismissal.

This techigue is useful in some situations, however, and we will use a variant of it in a later
implementation. For now, however, the use of sete seems more instructive and intuitively appealing,

Note that the two values sdismiss» and #1oses of this lechnigue may be interpreted to mean
L and T. extra values adjoined 10 the value donin o represent under- and over-constrained values.

(Fnd of digression.)

The 1ISP macro definition of the defprim construction (Fable 2-8) is rather involved, but
its cffect is straightforward. It declares name to be a global LISP variable, and sets that variable
to a newly created constraint-type data structure. T'he nante and pin-names arc installed in this
structure, and then the rules are defined using the defrule construct. The defrule construct
arranges for the 11SP variable +me+ to be bound to the constraint for which this rule is being
invoked (the constraint which was awakened). ‘The code for cach rule binds variables named
pin-name-ce 11 for cach pin of the constraint, and then checks to sce that the input pins for that

i i

[POPE

¥

[P S

§224 {mplementation of a Trivial Constraint Language 55

{(defmacro defprim (name vars . rules)
¢(progn ‘compile .
(declare (special ,name))
{(setq ,name (make-constraint-type))
(setf (ctype-name ,name) ’,name)
(setf (ctype-vars ,name) ',vars)
,@(forlist (rule rules)
s(defrule ,name
(let ,(forlist (var vars)
*(.(symbolconc var "-CELL") (the ,var smes}))
(and ,@(forlist (var (car rule))
‘{node-boundp ,(symbolconc var "-CLLL")))
(let ,(forlist (var (car rule))
¢{,var (node-contents ,(symbolconc var "-CLLL"}))))

,8(cdr rule))))))
‘{ ,name primitive)))

(defmacro defrule (typename . body)
(let ((rulename (gen-name typename ’‘rule)))
s(progn ‘compile
(push ’/,rulename (ctype-rules ,typename))
{defun ,rulename (smes) ,8body)
‘(,typename rule))))

Tapei: 2-8. Definition of Primitive Constraints and Rules.

(progn ‘compile
(push ‘equality-rule-23 (ctype-rules equality))
(defun equality-rule-23 (emes)
(let ((a-cell (the a smes))
(b-cell (the b smes))
(p-cell (the p smes)))
(and (node-boundp a-cell)
(node-boundp b-cell)
(let ((a (node-contents a-cell))
(b (node-contents b-cell)))
(setc p (if (= a b) 10))))))
‘(equality rule))

TaBLE2-10. Expanded Scecond Rule of the equal ity Constraint.

rule are bound. If so, then the rule-body appearing in the defprim construct is exccuted. Table 2-
9 shows the LISP code into which the call on defprim macro for adder cxpands.

The defrule construction simply generates a name for the rule, and defines a 11SP function
by that name. This function takes onc argument, a constraint, calls it sme =, and exccutes the rule
code. The name of the function is also added to the set of rules in the constraint-type. Table 2-10
shows the LISP code into whizch the sccond defrule in Table 2-9 cxpands.

Table 2-11 shows the implementation of contradiction and setc. An invocation of
contradiction cxpands, for example, as:

s

dntharih

[P A

56 ClHAPTER TWO PROPAGATION

(progn ‘compile
(declare (special equality))
(setq equality (make-constraint-type))
(setf (ctype-name equality) ’‘equality)
(setf (ctype-vars equality) ‘(a b p))
(defrule equality
(let ((a-cell (the a smes))
(b-cell (the b =mes))
(p-cell (the p smee)))
(and (node-boundp p-cell)
(fet ((p (node-contents p-cell})})
(or (= p 0) (= p 1) (contradiction p))))))
(defrule equality
(let ({(a-cell (the a wmes))
(b-cell (the b =mas))
(p-cell (the p smes)))
(and (node-boundp a-cell)
{node-boundp b-cell)
(let ({(a (node-contents a-cell))
(b (node-contents b-cell)))
(satc p (if (= ab) 10))))}))
(defrule equality
(let ((a-cell (the a smes))
(b-cell (the b =mes))
(p-cell (the p =mes)))
(and (node-boundp p-cell)
{node-boundp a-cell)
(let ((p (node-contents p-cell))
(a (node-contents a-cell)))
(and (= p 1) (setc b a))))))

(defrule equality
(let ((a-cel!l (the a smes))
(b-cell (the b =mes))
(p-cell (the p =mes}))
(and (node-boundp p-cell)
{(node-boundp b-cell)
(et ((p (node-contents p-cell))
(b (node-contents b-cell}))
{and (= p 1) (selc a b))))))
‘(equality primitive))

TaRLE 2-9. Fxpanded Definition of the equality Constraint.

(contradiction a c¢) — (signal-contradiction smes (1ist a-cell c-cell))

T'he function signal-contradiction causes an crror, and prints information as to the source

of the contradiction.
‘The setc construct is also implemented as a 11sP macro. A call to setc expands, for

cxanple, as:

(setc ¢ (+ a b)) — (process-setc smes ‘c c-cell (+ a b))

§23 Sample Exccution of a Constraint Program 57

{defmacro contradiction vars
‘(signal-contradiction smes (list ,@(forlist (v vars) (symbolconc v "-CELL"))}))

(defun signal-contradiction (constraint cells)
(require-constraint constraint)
(lose "Contradiction in ~S™@(among these pins: ~:{"S="S87:t, ~}7)."
constraint
(forlist (cell cells)
{(require-cell cell)
(1ist (cell-name cell) (node-contents cell)))))

(defmacro setc (cellname value)
- s(process-setc smes ’,cellname ,(symbolconc celiname "-CELL") ,value))

(defun process-setc (+mes name cell value)
{require-constraint smes)
(require-cel} cell) .
(ctrace "”S computed the value ~S for its ~S."” sme» value name)
== cell (constant value)))

Tasik 2-11 lmplementation of contradiction and setc.

The first and third arguments to process-setc arc provided purcly for the sake of the ctrace
opceration. The sctting of a cell could be performed by torcibly inserting the value into the cell,
but it is casicr simply to create a constant ccll containing the vatue and then equate it to the cell
to be set. It is inefficient, in that an extra repository is created by constant and another by ==,
However, it fcts the existing machinery in == do all the work of ¢checking for contradictions. (We
will fix this incfficiency in the ncxl‘chaptcr.)

2.3. Sample Execution of a Constraint Program

Here we consider an interactive session with our trivial constraint language. We shall construct
the temperature conversion network of Figure 2-2. User input appears in lower case, and the LISP
value produced by this input appears in upper case. The ctrace statements in the code produce
comment lincs beginning with “; [™.

First we create instances of the constraint devices we shall need. in this case an adder and two
multiplicrs. ‘The value returned by create is the data structure for the constraint, which prints as
the unique name of the constraint, surrounded by angle brackets (thanks to the printing code which
appears in the definition of the constraint data type in Table 2-3).

(create add adder)
<ADO:ADDER-20>

(create mult muttiplier)
CMULT:MULTIPLIER-24>

(create othermult multiplier)

R T

POV TP SR

-

PR

58 CHAPTIR TWO PROPAGATION

<OTHERMULTY :MULTIPLIER-28>

The unique number (appended by the Lisp function gen-name) is incremented by four cach time
because for cach of these constraint instances three cells are also generated to serve as pins. We can {
refer to a pin by using the the counstruction, {

(the a othermult) b

CCELL-29 (A of OTHERMULT): no value> !
; (the b othermult) ‘
' CCELL-30 (B of OTHERMULT): no value>
E (the c othermult)

CCELL-31 (C of OTHERMULY): no value>

The ability to do this interactively is not really part of our defined constraint language; it is, :
however, a decided convenicnce in interacting with the system. ‘T'he fact that gencrated names !
contain numbers in increasing order is also irrelevant to the defined computational abilities of the
system, but do aid in understanding in what order certain actions happen to occur. Note that when
a cell is printed, the unigue name and also the pin name and owner are printed, and also the
value if any (the code which docs this appears in Table 2-1). We did not define any input/outpat
operators for our language, but the ability to examine cells interactively in this way will allow us to
see the results of the computation. 12

SN
2

e

ik

Next we declare that we will need two global variables fahrenhe it and centigrade.

(variable fahrenheit)
CCELL-32 (FAHRENHEIT): no value> 1
(variable centigrade)

CCELL-33 (CENTIGRADE): no value>

PPN

Now cuch cell must have a repository. We can examine the repository of a cell, o

(cell-repository fahrenheit)
<Repository for CELL-32>

We now wire the network together. We begin by cquating fahrenhe it to the ¢ pin of the adder
add.

(== fahrenheit (the c add))
DONE

i

12. Al of these remarks of course have little to do with the design of a constraint language as such. Rather, they
arce intended to show how a toy sysiem can be imbedded in a larger system (in this case a 11SP system) with a
minimum of work (o get it off the ground just cnough o exhibit a principle, without having to re-implement a host
of tnvial details (such as 170) B: aranging for the interpicter of the constiaint language 10 be that of LISP, and
that the forms of the constraint language are simple certain evaluable 1I1SP forms, then when interacting with the
system we can evaluate constraint forms or 13SP forms at will. More abstractly, at any time we may shift freely from |
language 10 meta-language and back.

§2.3 Sample Lxccution of a Constraint Program 59

Examination of the repository of (he cell fahrenheit reveals that it has been linked to another
cell ce11-23. This is the name of a cell which turns out (not very surprisingly) to be the ¢ pin of
adder-20. which is also called add.

(cell-repository fahrenheit)
{Repository for CELL-32,CELL-23>

cell-23

<CELL-23 (C of ADD): no value>
(the ¢ add)

<CELL-23 (C of ADD): no value>
adder-20

{ADD:ADDER-20>

add

<ADD:ADDER-20>

Specifying a constant creates a cell with no owner and name “?7,

(constant 32)
<CELL-34 (?): 32>

We now conncect this constant to the b pin of the adder. 13

(== (the b add) cell-34) 7
; |Awakening <ADD:ADDER-20> because its B got the value 32.
DONE

The ctrace statement in the definition of == (sce Table 2-5) printed a comment indicating that
onc pin got a value and so all rules were being run. However, no rule of the adder constraint type
can do anything with only onc input.

If we examine the b pin of add we can sce that it indeed also has the value 32,

(the b add)
CCELL-22 (B of ADD): 32>

l.et us without further ado wire up the rest of the network of Figure 2-2. Two more ctrace
comments are produced when the constants 5 and 9 are wired up.

(== (the a add) (the a othermult))

OONE

(== (the ¢ othermult) (the ¢ mult))

DONE

(== (the b othermult) (constant 5))

:|Awakening <OTHERMULT:MULTIPLIER-28> because its B got the value 5,

13. OF course, this statcment is not properly part of the constraint language, but a mixiure of the constraint language
and ils meta-language ISP (because the variable ce11-34 is part of the meta-language- -indced the very fact that
we know of the existence of that name indicates that we have gone outside the coustraint language and cxamined
the internals of the implementation!).

AT | P S ey . R

60 CHAPTER TWO

DONE

(== centigrade (the b mult))

DONE

(== (the a muIt) (constant 9))

i |Awakening <MULT:MULTIPLIER-24> because its A
DONE

PROPAGATION

got the value 9.

‘The network, now completely wired, can be used to perform a computation. Here we will try
the computation of I-igure 2-3. The cell centigrade is equated to the constant -40.

(== centigrade (constant -40))
:|Awakening <MULT:MULTIPLIER-24> because its B
{J<MULT:MULTIPLIER-24> computed the value -360

got the value -40.
for its C.

i |Awakening <OTHERMULT:MULTIPLIER-28> because its € got the value -360.

; | COTHERMULT :MULTIPLIER-28> computed the value

-72 for its A.

: |Awakening <ADD:ADDER-20> because its A got the value -72,
| : |CADD:ADDER-20> computed the value -40 for its C.
; : |Awakening <ADD:ADDER-20> because its C got the value -40.
| ; |<ADD:ADDER-20> computed the value -72 for its A.
|

: |<ADD:ADDER-20> computed the value 32 for its

;| <OTHERMULT :MULTIPLIER-28> computed the value
; JCOTHERMUL T :MULTIPLIER-28> computed the value
; | COTHERMULT :MULTIPLIER-28> computed the value
i |<OTHERMULT :MULTIPLIER-28> computed the value
:] COTHERMULT :MULTTPLIER-28> computed the value
i JAwakening <MULT:MULYIPLIER-24> because its C

: | CMULT :MULTIPLIER-24> computed the value -360
DONE

(because then the sct of newcomers is cmpty).

fahrenheit .
CCELL-32 (FAHRENHEIT): -40>

&)

B.

.| CADD:ADDEP.-20> computed the value -40 for its C.
: |Awakening <OTHERMULT:MULTIPLIER-28> because its A got the value -72.

-72 for its A.

5 for its B.

-360 for its C.

5 for its B.

-360 for its C.

got the value -360.

| CMULT :MULTIPLIER-24> computed the value 9 for its A.
: |<MULT:MULTIPLTER-24> computed the value -40 for its B.

for its C.

Note that cach constraint device here has computed new values for its pins, including those pins
wh i originally provided input values! For example, given a and ¢ the adder computed a value
for b—-but once b was in hand, it could be used with a to compute ¢, and with ¢ to compute
a. Nothing detects the fact that the adder itself computed the value for b. On the other hand, the
process docs not iterate indefinitely (4 common bug indeed when implementing this sort of thing!)
because == does not run any rules when a value is equated to a cell which wlicady has a value

If we now cxaming the cell fahrenheit, we sce that indeed it has acquired the value —40.

§23 Sample I'xecution of a Constraint Program 61

contradiction!

unknown

(b) (c)

Ficure 2-8. Operation of the maxer Constraint.

e o m

Suppose now that we attempt to set fahrenheit to 32. When merge-values gets the
vaiues —40 and 32, it finds that they arc incompatible, and invokes lose.

(== fahrenheit (constant 32))
>>ERROR: Contradiction between <CELL-32 (FAHRENHEIT): -40>
and <CELL-51 (?): 32>.

As another toy example to show off the contradiction inechanism. consider a maxer
box with its a pin cquated to 5. We will take three such boxes and cquate their ¢ pinsto 7, 5, and
3, respectively.

(create m1 maxer)
<M1:MAXER-68>
(create m2 maxer)
(M2 :MAXER-72>
(create m3 maxer)
<{M3:MAXER-76>

(== (the a m1) (constant 5))

:|Awakening <M1:MAXER-68> because its A got the value 5.
DONE

== (the a m2) (constaat 5))

;|Awakening <M2:MAXER-72> because its A got the value §5.
DONE

(== (the a m3) (constant 5))

i |JAwakening <M3:MAXER-76> because its A got the value 5.
DONE

FFrom the valucsa = 5 and ¢ = 7, m1 can deduce b = 7. (Sce Figure 2-8a.)

ey

62 CluAPTIR TWO PROPAGATION

(== (the c ml1) (constant 7))

: |Awakening <M1:MAXER-68> because its C got the value 7.
: |[<M1:MAXER-68> computed the value 7 for its B.

; |Awakening <(M1:MAXER-68> because its B got the value 7.
; |[<M1:MAXER-68> computed the value 7 for its B.

; J<M1:MAXER-68> computed the value 7 for its C.

; |[<M1:MAXER-68> computed the value 7 for its C.

DONE

Note that vatues were computed for b and ¢ nwice cach. This is because in this implementation
when a value is reccived on any pin, @fl rules are fired. Since two pins got values. all rules are fired
twice. 1t all settles down in the end. but is a source of inefficiency.

Whena = 5 and ¢ = 5. no specific value can be computed for b, All that is known is that
b < 5. (Sce Figure 2-8b.)

== (the ¢ m2) (constant 5))

; [Awakening <M2:MAXER-72> because its C got the value 5.
DONE

Whena = 5 and ¢ = 3, we have an inconsistent situation. (Sce Figure 2-8c.

== (the ¢ m3) (coastant 3))
; |Awakening <M3:MAXER-76> because its C got the value 3.
>>ERROR: Contradiction in <M3:MAXER-76> among these pins: A=5, C=3.

The inconsistency has caused a fatal error. (Later we will sec how such errors can be useful
rather than fatal, and can cause the system to scarch for ways to resolve the problem.)

2.4. A Difficulty with Division

There is an intentional peenliarity in our definition of the multiplier primitive in Table 2-
7. which is that if a division does not come out exactly it simply fails to compute a result. One might
arguc that since we have defined the data objects of our language to be the integers, then it is an
crror to try to divide. say, 7 by 3. because there is no object nsuch that3 X n = 1.

Suppose that we construct another temperature conversion network as in §2.3, just before
we assign the value —40 the centigrade. f.ct us sce what happens if we instcad cquate
centigrade to the constant 37.

== centigrade (constant 37))

; |Awakening <MULT:MULTIPLIER-100> because its B got the value 37.

: J<MULT:MULTIPLIER-100> computed the value 333 for its C.

: |Awakening <OTHERMULT:MULTIPLIER-104> because its C got the value 333.
; |Awakening <MULT:MULTIPLIER-100> because its C got the value 333.

g m— e e o

|
!

§2.4 A Difficulty with Division 63

- . —_— - =

FAHRENHEIT . CENTIGRADE
{nothing!)

{nothing!)

Ficure 249, A Temperaare Conversion Which “Failed™

i |<MULT:MULTIPLIER-100> computed the value 9 for its A.

; J<MULT:MULTIPLIER-100> computed the value 37 for its B.
: | <MULT:MULTIPLIER-100> computed the value 333 for its C.
DONE

It scems that mult performed some uscful work, but othermult did not, and add was not
even awakened. (Sce Figure 2-9.)

fahrenheit
<CELL-108 (FAHRENHEIT): no value>

Indeed fahrenheit has not had any valuc computed for it

(the a othermult)

<CELL-105 (A of OTHERMULT): no value>
(the b othermult)

<CELL-106 (B of OTHERMULT): 6>

(the c othermult)
CCELL-107 (C of OTHERMULT): 333>

The constraint othermult has values for b and ¢ , but cannot compute a value for a because
the division 333/5 is not cxact. However, we do find it uscful in mathematics to extend the
integers to the rational numbers, and say that there is an object which represents the result of this
devision, even though we don't have any better way to represent it than as “333/57, that is to
say, “that object which is the quotient of 333 and 5”. 1f we examine the state of the network in
Figure 2-9, we can sce that this quatient is represented by the neiwork iiself. considered as a data
structure. Morcover, the network represents the fact that fahrenheit is the difference between

this quoticnt (whatever it is) and 32.

N P A A et s S, Sl n - ae

———— e ———

64 CuAPrIER Two PROPAGATION

P1 P2 P3

L
+H— |+
L |

We crwld introduce rational nnmbers as a primitis ¢ data ty pe. Such an implementation would
presumably use a 11SP data structure to hold the numerator and denominator of a v tional number.,
and provide 11SP functions for manipulating such data objects, providing primitives for rational
arithmetic. This would be a strange move at this point. however. as the data structure merely copics
what the constraint network represents anyway: a data structure (the multiplier constraint, con-
sidered as a division box) with two known values (numerator and denominator). The teom “rational
arithmetic™ is a misnomer, for it is actually a curious combination of anthmetic and algebra—and
thus far our language, which can propagate values within the network but cannot angment the
nctwork, encompasses only arithmetic,

‘There is onc more way in which local propagation can fail to compute a result. 1 a constraint
network contains cycles, then propagation may not be able to make progress. The dilticulty is
that such a nctwork cxpresses a sct of simultancous cquations which miust be solved by algebra,
Consider the network in Figure 2-10. ‘There are three variables p1, p2. and p3. intended to
represent the positions of three points along an axis. ‘The nctwork constrains the three points to
be equally spaced; that is, p2 is midway between p1 and p3. The network actually expresses the
first description of the last senience more closely: the two adder constraints determine the spacing
between adjacent puints, and then the two distances are cquated.

p2 —pl =p3 —p2

‘The second description corresponds more to the formula

p2 = PLEP3

2

Yect a third formulation is that the spacing between the endpoints is twice the spacing between
cither sct of adjacent points.

p3 —p1 =2 X (p3 —p2) =2 X (p2 — p1)

§2.5 A Difficulty with Division 65

P1 P2 P3

+
~ |

FIGUuRrE 2-11. Constrining Three Points to be Fqually Spaced (ii).

P1 P2 P3

+ +

r SPACING

| X

+___‘
|._

FIGURE 2-12. A Redundant Network for Fqually Spacing Three Points.

However, the network expresses only the first formulation. Given either pair of adjacent points, the
pusition of the third is casity computed: one adder calculates the spacing between them, then the
other adds or subtracts this spacing from the midpoint te locate the endpoint not given. However, if
the two endpoints are given and not the midpoint, neither adder can compute anything,

Similarly, if we were to use just one version of the third formulation (sce Figure 2-11), then
given pl1 and p2 it would not be possible to compute p3 by local propagation.,

Onc way to enable any point to be computed given the other two is to use a redundant net-
work expressing multiple ways of viewing the problem [Sussman 1977] (sce IMigure 2-12). Another
way is simply to usc an entirely different network, such as the sccond formulation above (sce
IFigure 2-13): however, deriving this from the first network requires some non-trivial algebra, and

P

L\
E

g v —m—————

e it sl

66 CHAPTER TWO PROPAGATION

P1 , P2 P3

-
Nae”

FIGURE 2-13. A Cycle-Free Network for Fqually Spacing Three Points.

indeed a new concept: the other networks express direct spacing requirements, whereas Figure 2-13
uscs the concept of “averaging the positions of the endpoints”.

2.5. Summary of the Trivial Constraint Language

Our tittle language iHustrates the principle of computation by local propagation, with the
dircction of propagation determined dynamically as needed. It certainly leaves much to be desired:
e 'The data objects arce limited to the integers. We are used to having other kinds of objects in

programming languages. including compound objects such as arrays.

e ‘There is no abstraction capability: the language is “flat™, which is to say that we can build very
large networks but cannot in any way encapsulate portions into modules. We would like to have
something analogous to subroutines.

e A given network can be built and then used once, but then must be thrown away. FFor cxample,
in §2.3, after using a temperaturc conversion network to convert —40° C to —40° I, we could
not then use the same network to convert 37° C—we got a contradiction because the network
was alrcady “used up”. This means we cannot usc a constraint nctwork in a dynamic manner
to track a changing input—and this would be onc of the most uscful attributes of a constraint
language, if we could only implement it.

e ‘The mechanism f local propagation can fail to compute a result for any of scveral reasons.
A relationship may be multiple-valued (as arcmax, z), and there is no good way to choose
among the possibilitics. A relationship may “have a value™, but one which is not really in the
domain of the language (for example, rational numbers in a system providing only intcgers).
These are both local propertics of a single constraint. It is also possible that the difficulty is
global, involving cycles ir the network, and cannot be handled by a local technique. 'This can be
handled by algebraic techniques, which involve transformations of the network, which for now
is outside the computational scope of our system.

ey ———

A

Y

§25 Stanmary of the Trivial Constraint Language 67

e When contradictions occur (for whatever reason—re-usce of a network, a mistake, ctc.) there
is presently no casy way to determine why the contradiction occurred. We know what the
difficulty is locally (for example, division by zcro), but we do not know the global causes. A
related difficulty is that when something fails to be computed, as in §2.4, we don't know why
that happencd cither.

o ‘The system is computationally inefficient. It often recomputes the same value many times,

We will deal with all these difficulties in one way or another. To deal with all at once would

introduce overwhelming complexity of detail; therefore we shall examine cach feature separately

before combining them,

The best of the worst is full alive.
Tho™ wurst is not at first—
No livery may deliver me
An aliver liverwurst,
—Walt Kelly (1952)
! Go Pogo

Chapter Three

Dependencies

WHHN A DECISION 1S MADE, we very often wish to ask the person who made it not only,

“*What is the result?”, but also, “Why is that so? Why didn’t you choose something clse?
What factors went into your decision?” This is particularly true of design decisions in engineering,
‘There are scveral reasons for asking such qucstions. [f the result is not obvious, or by itself docsn't
carry enough information, then the structurc of the process which derived it may shed more light.
if something goes wrong later, we need this information to determine how to fix the problem; we
need to know what can be changed without affecting the result, or what to change to change the
result. Morc generally, if several decisions have been made, and one must be altered, one can do
this with minimum cffort if one can determine paramecters of the decision which will not affect
others. Another possibility is that no decision was rcached. In this case one wants to know why, and
what additional facts are needed to make a decision.

Now all of this is especially true of computers, which make so many decisions and computa-
tions so rapidly that it is very diflicult to determine what happened (or didn’t happen) after the fact.
‘I'he entire art of analyzing post-mortem core dumps is devoted to answering the questions outlined
above. ‘The notion of an audit trail (computerized or not) is also intended to permit the reconstrue-
tion of the computational process. It would be much simpler if programs were to keep track of the
rcasons for their computations from the start. Such programs could be held accountable for their
actions, and required to explain themselves on request.

In this chapter we will alter the system of Chapter T'wo to record the history of the computa-
tion as propagation occurs. Facilities will be developed for extracting this history {from the network
in a uscful form.

68

i ot

§3.1 Responsible Programs 69

3.1. Responsible Programs

[T Y

It is not at all difficult to augment our trivial constraint system to record reasons for each
computational action. We call such reasons dependencies, because they indicate for cach guantity
on what other quantitics its derivation depends.

e R Ak & ——

3.1.1. Dependency Information Can Be Used to Explain Computations

I.ct us suppose that we have been given a temperature conversion network with which we are
unfamiliar, but we have been assured that it correctly constrains two vanables called fahrenheit
and centigrade. Wc cquate centigrade to —40, then ask for the value of fahrenheit .
and arc told that it also is —40.

fahrenheit
CCELL-35 (FAHRENHEIT): -40>

We don’t trust the calculation (perhaps we suspect that there is a “short circuit™ between the
fahrenheit and centigrade variables—people sometimes make that sort of mistake!). We
ask why fahrenheit is —40,

(why fahrenheit)

;The value -40 is in CELL-35 because that is connected to (THE C ADD),
: and <ADD:ADDER-23> computed it using rule ADDER-RULE-1

: from: CELL-24 (A) = -72, CELL-25 (B) = 32.

Q.E.D.

So the adder add computed —40 from —72 and 32. [ct us investigate further. 1

(why (the b add))
;The value 32 is in CELL-25 because that is connected to CELL-37,
: and that is a constant. i

Q.E.D.
(why (the a add)) '
;The value -72 is in CELL-24 because that is connected to (THE A OTHERMULT), i1

: and COTHERMULT:MULTIPLIER-31> computed it using rule MULTIPLIER-RULE-8
. from: CELL-33 (B) = 5, CELL-34 (C) = -360.
Q.E.D.

Onec value is a constant, and the other was computed by a multiplicr called othermult. l.ctus A
examinc this multiplicr.

(why (the b othermult))

70 CHAPTER TUREE DEPENDENCIES

:The value 5 is in CELL-33 because that is connected to CELL-38,

: and that is a. constant.

Q.E.D.

(why (the ¢ othermult))

;The value -360 is in CELL-34 because that is connected to (THE C MULT),
; and <MULT:MULTIPLIER-27> computed it using rule MULTIPLIER-RULE-6

: from: CELL-28 (A) = 9, CELL-29 (B) = -40.

Q.E.D.

Now othermult gotits ¢ valuc from another multiplier called mu1t, We presson.. .

(why (the a mult))

;The value 9 is in CELL-28 because that is connected to CELL-39,

: and that is a constant.

Q.E.D.

(why (the b mult))

;The value -40 is in CELL-29 because that is connected to CELL-40,
: and that is a constant.

Q.E.D.

We have now traced out the entire computation, and if we reconstruct the flow of information, we
can deduce that the structure of the computation can be expressed as the formula

fahrenheit = 9)(_5—_40 + 32

which is certainly the correct computation.

We could also inquire as to the status of centigrade (for ecxample, we might have forgotten
that we sct it oursclves l).

(why centigrade)

:The value -40 is in CELL-36 because that is connected to CELL-40,
H and that is a constant.

Q.E.D.

(why cell1-40)

:The value -40 is in CELL-40 because that is a constant.

Q.E.D.

Now perhaps we don't care about the form of the computation, but only wish to know what
input parameters were used to compute the result. (This is trivial for our example, but for very
complicated networks this may not be at all ebvious.)

(why-ultimately fahrenheit)
;The value ~40 is in CELL-35 because that is connected to (THE C ADD),

1. In gencral, we reserve the right to have a poor memory— the computer, however, s supposed 1o remember! Poor
computer.

IR

< Pl

A s & ik

§312 Responsible Programs n

: and it was ultimately derived from:
: CCELL-37 (?): 32>,

; (CELL-40 (?): -40> = CENTIGRADE,

H CCELL-39 (?): 9,

H <CELL-38 (?): 5>.

Q.E.D.

Four values went into the computation, one of which has the name centigrade. Indecd, if
names were given to the other valucs, we would like to sce them also.

(variable linear-offset)
<CELL-41 (LINEAR-OFFSET): no value>
(variable linear-scale-factor-denominator)
CCELL-42 (LINEAR-SCALE-FACTOR-DENOMINATOR): no value>
(variable linear-scale-factor-numerator)
CCELL-43 (LINEAR-SCALE-FACTOR-NUMERATOR): no value>
(variable another-name)
<CELL-44 (ANOTHER-NAME): no value>
== (the b add) linear-offset)

DONE

(== (the b othermult) linear-scale-factor-denominator)
DONE
== (the a mult) linear-scale-factor-numerator)

DONE

(== centigrade another-name)

DONE

(why-ultimately fahrenheit)
:The value -40 is in CELL-35 because that is connected to (THE C ADD),
H and it was ultimately derived from:
; <CELL-37 (?): 32> == LINEAR-OFFSET,
; <CELL-40 (?): -40> == CENTIGRADE == ANOTHER-NAME,
; CCELL-39 (?7):) == LINEAR-SCALE-FACTOR-NUMERATOR,
; <CELL-38 (7): == LINEAR-SCALE-FACTOR-DENOMINATOR,
Q.E.D.

We can of course usc the two query types together. After using why to trace down the

computation tree a few steps, we can use why-ultimately to determine which parameters an
intermediate value depends on.

(why-ultimately (the c mult))

:The value -360 is in CELL-30 because it was ultimately derived from:
; CCELL-40 (?7): -40> == CENTIGRADE == ANOTHER-NAME,

H CCELL-39 (7): 9> == LINEAR-SCALE-FACTOR-NUMERATOR.

Q.€.D.

PP,

e o

aanditte.

oty —ge T
it i

R

e

R it

T CUHAPTER THREE DEPENDENCIES

3.1.2. Required Parameters Can Be Deduced from the Network Structure

Dependency information indicates how information was propagated within the network; the
information exists only after computations have been performed. Because any computation per-
formed by local propagation follows the structure of the network (having choices only in the
direction of the flow over existing paths), however, we can consider the network to prescribe the set i
of potential dependency relationships. Hence the network structure can be used o explain why a I
computation did not occur, or to indicate how one could occur which has not yet.

et us take another temperature conversion network, as at the beginning of §2.4. Before
assigning any value to centigrade. Ictus ask “(why fahrenheit)". this time meaning “"Why i
docs fahrenheit nofhave a value?” '

fahrenheit

<CELL-108 (FAHRENHEIT): no value>

(why fahrenheit)

;CELL-108 has no value. I could compute it

; from pins A, B of ADD by rule ADDER-RULE-1.
Q.E.D.

This tells us that fahrenhe it has no value, and suggests a way in which it might be computed.

(why centigrade)

;CELL-109 has no value. I could compute it

R from pins A, C of MULT by rule MULTIPLIER-RULE-T.
Q.E.D.

Of course centigrade has no value cither. [t could be computed if fahrenheit were given,
for cxample.

(why-ultimately fahrenheit)

;CELL-108 has no value. Perhaps knowing the value of CENTIGRADE would help.)
Q.E.D. .
(why-ultimately centigrade) r
;CELL-109 has no value. Perhaps knowing the value of FAHRENHEIT would help.
Q.E.D.

Ultimately the computation of cither variable depends on the other plus the existing constants (5, '
9, and 32) in the network. Only missing parameters arc given by why-ultimately.

(why (the c mult))

;CELL-103 has no value. I could compute it

: from pins A, B of OTHERMULT by rule MULTIPLIER-RULE-6; or
: from pin B of OTHFRMULT by rule MULTIPLIER-RULE-5; or i
: from pin A of OTHERMULT by rule MULTIPLIER-RULE-4; or

H from pins A, B of MULT by rule MULTIPLIER-RULE-6; or
: from pin B of MULT by rule MULTIPLIER-RULE-5; or

§3.1.2 Respousible Programs 13

H from pin A of MULT by rule MULTIPLIER-RULE-4,
Q.E.D.

The intermediate point (the ¢ mult) could be computed in any of a number of ways, by cither
of two constraint devices.

(why-ultimately (the ¢ mult))

;CELL-103 has no value. Perhaps knowing the value of CENTIGRADE or
; FAHRENHEIT would help.

Q.E.D.

Ultimately cither of the two vaniables could be used to compute a value for (the ¢ mult).
Suppuose now that we equale centigrade to 37 as in §2.4. As before, othermult will be
unablc to compule a value because the division is not exact.

(== centigrade (constant 37))

; |Awakening <MULT:MULTIPLIER-100> because its B got the value 37.

; |<MULT:MULTIPLIER-100> computed 333 for its part C from pins A, B.

s |Awakening <OTHERMULT:MULTIPLIER-104> because its C got the value 333.
; |Awakening <MULT:MULTIPLIER-100> because its C got the value 333.

DONE

Thercfore fahrenhe it has no value.

fahrenheit

CCELL-108 (FAHRENHEIT): no value>

(why Fahrenheit)

;CELL-108 has no value. I could compute it

; from pins A, B of ADD by rule ADDER-RULE-1.
Q.E.D.

(why-ultimately fahrenheit)

;CELL-108 has no value,

Q.E.D.

A sad state of affairs indeed. About all can be said is that the computation has failed. There are
no missing parameters—centigrade has been supplicd. 'The computation has broken down at
othermult.

(why (the a othermult))

;CELL-105 has no value. I could compute it

; from pins B, C of ADD by rule ADDER-RULE-3; or

; from pins 8, C of OTHERMULT by rule MULTIPLIER-RULE-8.
Q.E.D.

{(the b othormuit)

<CELL-106 (B of OTHERMULT): 5>

(the ¢ othermult)

CCELL-107 (C of OTHERMULT): 333

74 CHAPTER THREE DEPENDENCIES
§1) o P2 P3
N’ A
+ +
Y +— __ SPACING Y
2+

-
(Assume that the multiplication happens to be performed last.)

FIGURE 3-1. Multiple Supplicrs in the Fqual-Spacing Network,

The only rule othermult has for computing its a is multiplier-rule-8, which requires b
and c. However, the b and ¢ do have values, and nevertheless no value was computed for the
a. So there is no hope. Also, it would not do for {why-ultimately fahrenheit) to say,
“Perhaps knowing the vatuc of (the a othermult) would help™ there is no integer value that
can be given it that is consistent with the other pins of othermult alrcady known,

We will return to this problem of “failed computations™ in a later section. First Iet us discuss
how to implement the recording of dependencics, and the mechanisms nceded for the operation of
why and why-ultimately.

3.2. Recording Dependencies

Recording dependency information simply amounts to remembering the directions of the ar-
rows of Figure 2-3 (page 41), plus which rulc was used to compute cach outgoing value from a
constraint box. Obscrve that a repository which has a value can have first acquired that value from
exactly onc of its associated cells (a constant, or a pin of a constraint). We refer to this cell as the
supplier of the value. Later other cells may also provide values, but such vatues will merely confirm
or contradict the first value. 2

It is possible to regard other cells which provide values as subsidiary supplicis, and to
record them along with the distinguished supplicr. ‘There are diflicultics with using subsidiary
supplicrs, however. Recall that in §2.3 the adder add computed b from a and c, and so the

2. This argument implicitly assumes a sequential mieipreter for the lTanguage such as we have presented here. ‘The
language centanly admits parallel cvaluation, however, in which case computed values may arrive at a repository
“stmultancously”. In this case we assume that an arbiter chooses one Lo be first

~_,‘,,_,.“‘,4

e

§3.2 Recording Dependencies 15

(deftype repository ({rep-contents ()) (rep-boundp ()) (rep-cells ())
(rep-supplier ()) (rep-rule ()) (rep-mark (})))
(format stream "<Repository™:[T«~;: "ST]7@[for ~{"S™t,~}~ P~
{(rep-boundp repasitory)
(rep-contents repositary)
(cell-ids repository)))

e e

(defmacro node-contents (cell) :(rep-contents (cell-repository ,cell)))
(defmacro node-boundp (cell) +(rep-boundp (cell-repository ,cell)))
{defmacro node-cells {(cell) :(rep-cells (cell-repository ,cell}))
(defmacro node-supplier (cell) :(rep-supplier (cell-repository ,cell)))
(defmacro node-rule (cell) :(rep-rule (cell-repository ,cell)))
(defmacro node-mark (cell) +(rep-mark (cell-repository ,cell)))

Compare this with Table 2-1 (page 45).

TABLE 3-1. Fxtra Repository Ficlds for Recording Dependencics

e e — e

ccll (the b add) scrved as supplier for its repository. However, the adder then proceeded to
awaken to the fact that its b had just reccived a value, and computed ¢ from a and b (and
similarly a from ¢ and b). ‘Thus (the ¢ add) became a subsidiary supplier for its repository.
‘Fo make use of this fact, however, in explaining the computation of (the b add) would involve
circular reasoning. While we might circumvent this particular problem by avoiding the awakening
of the adder when it computed a value for its own pin, the problem would remain in general in
networks with large cycles. For example, in the equal-spacing network of Figure 2-12 (page 65),
the propagation of values might proceed as in Figure 3-1, and the maltiplier would be a subsidiary
supplier of the spacing factor. However, we would not want to use this fact to justify the computa-
tion of the spacing factor, because then the value of p3 would appear to to have been computed
indirectly from itself.

In order not to produce circular explanations, it is necessary for the dependency structures to
be well-founded. We will achicve this be recording only primary supplicrs, which guarantees that
no cycles will occur. (Onc can think of information as a fluid spreading from constants throughout
the constraint nctwork by propagation, different flows combining within constraint boxes, but
stopping short just before mecting in a repository.)

In the implementation we therefore introduce some new components for repositorics. (It will
not be necessary to change the definitions for cells, constraints, or constraint-types.) These arc:

o A supplier, which is that cell among the node-cells which first provided the valuc for the
repository. The supplicr is null if the repository has no value (boundp is false).

o A rule, which is the name of the rule used to compute the value. 'The rule component is null if
the repository has no value, or if the supplicr has no ewner (i.c., is a constant).

o A mark, which is normally null but is available to scrve as a mark bit or a counter by various
graph-marking algorithms to be intoduced later.

76 CUAPLER THREE DEPENDENCIES
(defun constant (value)
(tet ((cell (gen-cell)))
(setf (node-contents cell) value)
(setf (node-boundp cell) t)
(setf (node-supplier cell) cell)
cell))

Compare this with Table 2-2 (page 47).

TasrLe 3-2. A Constant Cell Is Its Own Supplicr.

The new definition of the repository data structure appears in ‘Tuble 3-1. Vertical lines to the
left of the code draw attention to differences from the previous version, As before, extra macros
likc node-supplier arc defined to make it casier to refer to components of a node (in the
repository) given one of itscclls.

New code is needed to maintain the supplier and rule components of repositorics. No new
code is needed for generating a ccll (gen-ce11); the initial-value mechanisin of deftype cor-
rectly initiatizes the new components of a repository. When a constant cell is created, however, that
cell should be its own supplier (sce Table 3-2).

Several changes to the code for == appear in Table 3-3. Onc improvement which is
supcrficially unrelated to maintaining dependencics is that no new repository is created when two
cells arc cquated; instead one repository is re-used. Whichever repository has a vatue is the one
chosen, so it is unnccessary to explicitly update the supplier and rule components. Also, it is
only nccessary to update (in the dolist loop) the cell-repository components of cells
which belonged to the repository not chosen. ‘The loop for awakening all the owners of a set of
cells has been abstracted oat as a separate procedure awaken-al1l, which will also be used by
process-setc¢ later.

A particularly nasty opportunity for implementation bugs arises in the situation where both
the cells being equated alrcady have values. As before, merge~-vatues will ensure that the two
values arc compatible. However, it previously did not matter which of two compatible values
was uscd: but now, when values have dependency information attached, it is crucial not to pick
the wrong one, lest circularitics arise in the dependeney structure. Suppose, for example, that a
multiplicr m is created, and its a is equated to zero.

(create m multiplier)

C(M:MULTIPLIER-23>

== (the a m) (constant 0))

:JAwakening <M:MULTIPLIER-23> because its A got the value 0.
;| <M:MULTIPLIER-23> computed 0 for its part C from pin A,
;|Awakening <M:MULTIPLIER-23> because its C got the value 0.
DONE

P

'!"“ ' "*""""""""ll"'!lIlIlIllll""l'lllllllllllllll-Il!l------u------|1l

§32 Recording Dependencies T >

(defun == (celll cell2) W
(require-cell celll)
(require-cell cell2)
(or (eq (cell-repository celll) (cell-repository cell2))
(let ((rl (cell-repository celll))
(r2 (cell-repository cell2))
(cbl (node-boundp celll))
(cb2 (node-boundp cell2)))
(let ((r (if (or (not ¢b2) (and cbl (ancestor celll cell2))) rl1 r2))
(rcells (append (rep-cells 1) (rep-cells r2})})))
(setf (rep-contents r) (merge-values celll cell2))
(let ((newcomers (if cbl (if cb2 "() (rep-cells r2}))
(if cbZ (rep-cells ri} "()})})}
(setf (rep-cells r) rcells)
(dolist (cell (rep-cells (if (eq r r1) r2 rl)))
(setf {cell-repository cell) r))
{awaken-all newcomers)
*done)))))

(defun awaken-all (cells)
(dolist (cell cells)
(require-cell cell)
(cond ((cell-owner cell)
(ctrace "Awakening S because its 7S got the value “S.”"
(cell-owner cell)
(cell-name cell)
{node-conteats cell))
(awaken (cell-owner cell})})))

Canipare this with Table 2-5 {page 51).

TABLE 3-3. Maintaining Supplicr Components When Fquating Cells,

Now that the a and ¢ both have the value zero, they are equated.

(== (the ¢ m) (the a m))

DONE

(why (the a m))

:The value 0 is in CELL-24 because that is connected to (THE C M),
: and <M:MULTIPLIER-23> computed it using rule MULTIPLIER-RULE-4
: from: CELL-24 (A) = 0.

Q.E.D.

‘I'his is what occurs if the version of == in Table 3-4 is used (which is a version the author used for
quite a while before finding the bug while trying to “prove™ it correct to himscl?). The repository
belonging to ¢ is arbitrarily chosen for use by the two cells for a and ¢, and the result is that ¢
appears to be the primary supplicr rather than the constant zero. Now zero is not the only value
consistent with the network constructed (a and ¢ could be any value if b were 1), and so it is
quite improper for the value zero in (the a m) toclaim to support itself.

‘That this dependency cycle arises in this cxample is of course accidental. Had the equating of
a and c been written as

78 CUAPHER THREE DEPENDENCIES

(defun == (celll cell2)
(require-cell celll)
(require-cell cell2)
(or (eq (cell-repository celll) (cell-repository cell2))
(let ((r1 (cell-repository ceclll))
(r2 (cell-repository cell2))
(cbl (node-boundp celll))
(cb2 (node-boundp cell2)))
| (let ((r (if cbl r1 r2)) ;There is a bug here!
(rcells (append (rep-cells rl1) (rep-cells r2))))
(setf (rep-contents r) (merge-values celll cell2))
(let ((newcomers (if cbl (if cb2 ‘() (rep-cells r2)) ‘
(if ¢cb2 (rep-cells rl1) 7())))) i
(setf (rep-cells r) rcells) :
(dolist (cell (rep-cells (if (eq r rl) r2 ri1))) ‘
(setf (cell-repository cell) r))
(awaken-all newcomers) !

‘done)})))

Compare this with Table 3-3.

Tanit 3-4. An Incorrect Implementation of Fquating.

(== (the a m) (the c m))

then the correct repository would have been accidentally chosen, and all would be well. Again, if
the connection between a and ¢ been made before the conncection to the constant zero, then all
would have been well, However, we would like a constraint language to be as frec as possible of
such accidental ordering problems. The system must always do things in a consistent and correct
manner. This is the reason for the use of the ancestor predicate in the (correct) definition of
== in Table 3-3. Given two cells which have values, ancestor returns “truc” if and only if the
value in the sccond cell was supplied by a computation depending in part on the first cell; in this
casc the first ccll is said to be an ancestor of the second. ‘This predicate defines a partial order on
cells with valucs if the dependencics are kept consistent and cycle-free; indeed, the predicate is
preciscly that partial order defined by the transitive closure of the “primary supplicr™ relation plus
the “triggers-for™ relation which indicates what values were used by a rule to compute a new value.
The definition of ancestor will appear a little later when details of the new representation of
rules have been claborated upon.

In the last chapter rules were simply LISP functions which could be run whenever a cell got
a value. This will still be true, but for explanation purposes it will be uscful to associate other
information with rules. As a matter of implementation convenicnce 3 the property list of the symbol
naming the rule is used to store this extra information. It would be perfectly reasonable to define

7

3. or laziness—but this illustrales a common technique of LISP programnung: the use of the property list. 1t also
illustrates a gencral technique of interactive programming: do as little work as you can while trying out an idca—
the time to polish the code is after the idea is known to work. Pul another way. it's not worth investing a lot of
ciTort for the sake of elegance or speed in an idea that may not work anyway.

‘ _ . . T AT T A R S OIAT . (o

Lo -

§32 Recording Dependencies 79 ;

{defprim adder (a b ¢) 1
(c (a b) (setc ¢ (+.a b)))
(b (a c) (setc b (- c a)))
(a (b c) (setc a (- c b}))))

(defprim multiptier (a b c)

(c {(a) (and (zerop a) (setc ¢ 0)))

(c (b) (and (zerop b) (setc ¢ 0)))

(c (a b) (setc c (= a b)))

(b (a c) (and (not (zerop a)) (zerop (\ c a)) (setc b (// ¢ a}))))
{(a (b c) (and (not (zerop b)) (zerop (\ ¢ b)) (setc a (// ¢ b))))

)

o ——— e e

(defprim maxer (a b c)
(c (a b) (setc c (max a b)})
(b (a c) (cond ((< a c) (setc b c))
((> a c) (contradiction a c})))
| (a (b c) (cond ((< b c) (setc a c))
((> b c) (contradiction b c)))))

(defprim minner (a b c) i i
(c (a b) (setc c (min a b)))
{b (a c) (cond ((> a c) (setc b c))
((< a c) (contradiction a c))))
| (a (b c) (cond ((> b c) (setc a c))
((< b c) (contradiction b c)))))

(defprim equality (p a b)

((p) (or (= p 0) (= p 1) (contradiction p))) fé‘i
(p (a b) (setc p (if (= a b) 1 0))) b
(b (p a) (and (= p 1) (setc b a))) 7

(a (p b) (and (= p 1) (setc a b}))) -

(defprim gate (p a b) 1
((p) (or (= p 0) (= p 1) (contradiction p))) ;
{p (ab) (or (= ab) (setc p 0))) 1
(b (p a) (and (= p 1) (setc b a)})
(a (p b) (and (= p 1) (setc a b))))

Compare this with Table 2-7 (page 53).

TABLE 3-5. Implementation of Primitive Constraints with Dependency Information.

a new data type called rule with several components (one of them being the function itscif),
but this technique lessens the distance between the old and new code; for example, the code for
awaken nced not be altered.

With cach rule is associated two lists of names of pins. The list trigger-names contains the '
names of pins which must have values in order to run the body of the rule. This is exactly the set 'p
of pins whosc boundp components arc checked by the preamble in cach rule defined by defprim.
The list output-names contains the names of pins which might (or might not) reccive values when !
the rule is run. Thus these are the pins which are “inputs” or “outputs™ for that rule. Any given]
invocation of the rule might not usc all the inputs and might not give values to all the outputs,
however, depending on the valucs of inputs cxamined.

-
A b, -

80 CHAPTER THREE DEPENDENCHES

(defmacro defrule (typename output-names trigger-names . body)
(Yet ({rulename (gen-name typename ‘rule)))
*(progn ‘compile

(push ’,rulename (ctype-rules ,typename))
(defun ,rulename (smes) (let ((srules ’,rulename)) ,@body))
(defprop ,rulename ,trigger-names trigger-names)
(defprop ,rulename ,output-names output-names)
"{,typenane rule))))

(defmacro defprim (name vars . rules)
*(progn ‘compile
(declare (special ,name))
(seta ,name (make-constraint-type))
(setf {(ctype-name ,name) ',name)
(setf (ctype-vars ,name) ‘,vars)
,8(forlist (rule ruies)
(do ((r rule (cdr r))
(output-names ‘() (cons (car r) output-names)))
((or (nul, {car r)) (not (atom (car r))))
(let ((trigger-names (car r))
(body (cdr r)))
‘(defrule ,name ,output-names ,trigger-names
(let ,(forlist (var vars)
*(,(symbolconc var "-CELL") (the ,var smes)))
(and ,@(forlist (var trigger-names)
«(node-boundp ,{symbolconc var "-CELL")))
(let ,(forlist (var trigger-names)
+(,var (node-contents
,{symbolconc var "-CELL"))))

»8body))))))))
'{,name primitive)))

Compare this with Table 2-8 (page 55).

TasLE 3-6. Defintion of defprim Which Suves Rule Information.

‘These lists could be computed automatically by analyzing the code of the rule-body, and a
“real” constraint language system ought to do this. 1o save work here, however, that information
will be represented redundantly (just as in the last chapter the set of trigger names was writicn
redunadantly). The format of defprim is redefined such that the output names are writien before
the list of input names in cach rule clause. New definitions of the primitive constraint boxes are
in Table 3-5; ncw definitions of defprim and defrule appear in Table [¢ (Only the most im-
portant changes in the code are indicated by vertical lines to the left—for example, the substitutions
of “trigger-names” for “(car rule)” inscveral places in defprim arc not marked.) One
change to defrule which is used by process-setc is that the variable «rule= is bound to
the name of the rule when the rule-body is exccuted.

If the primary supplier for a value is a pin of a constraint, then the repository for that value
also contains the name of the rule which derived that vatue. Given that, the names of the triggers

§33 Producing Explanations 81

- ———— e

(defun ancestor (celll cell2)
(let ((r1 (cell-repository celll))
(r2 (cell-repository cell2)))
(or (eq ri r2)
(and (rep-boundp r2)
(cell-owner (rep-supplier r2))
(do ((tns (get (node-rule (rep-supplier r2)) ‘trigger-names)
(cdr tns)))
((null tns) ())
(and (ancestor celll (sthe (car tns) (cell-owner (rep-supplier r2))))

(return 1)))))))

Tanti 3-7. Definition of the Ancestor Relationship between Colls with Values.

for that rule can be obtained. and from that and the owner of the pin the trigger cells themselves
and their values can be located. This is all that is needed to define the ancestor predicate (sce
Table 3-7). One cell is an ancestor of another if they have the same repaository, or if the sccond is
bound and the first is an ancestor of one of the triggers for the rule used to compute the second.
(Another way to compute this would be: the first is an ancestor of the sccond if they have the same
repository, or if any pin for which the first had been a trigger is an ancestor of the second. This
scarches from the top down rather than the bottom up. However, a value may be a trigger for
arbitrarily many other values, but any given value is computed from only as many rigger valucs
as arc required by the rule needing the greatest number of triggers (among all rules in the system).
Intuitively, then, the fanout of the scarch procedure in ‘Table 3-7 is guaranteed to be bounded, wile
that of the ather is not. Oun the other hand, perhaps in typical use the typical value is a trigger for
only one or two other values. 1 have not yet made measurements to determine which procedure is
better in practice.)

No change is necessary for handling the contradiction construct. On the other hand,
setc and process-setc must be changed to install supplier and rule information (sce Table
3-8). With this rcquirciment, it is just as casy not to make up a fresh cell and equate it to the pin;
instcad, one might as well just do the relevant tests and install the new value (if indeed it is new)
in the existing repository along with the supplicr and rule information. If the pin to be set doces
not have a value, then the value and dependency information is installed and all interested partics
awakened. [F it docs have a value, then it had better be the same as the one we wish to install,
Technically merge-values should be used here, but tor now we omit this for the sake of giving
a more precise error message, Similarly, a side benefit of having setc do some case analysis is that
less ctrace output is generated; this version of setc only calls ctrace when a new value has
been computed.

A ririma

82 CHAPTER THREE DEPENDENCIES

(defmacrd satc (cellname value)
*(process-setc smes. ’,celliname ,(symbolconc celiname "-CELL") ,value srules))

J(defun process-setc (smes name cell value rule)
(require-constraint smgs)
{require-cell cell)
(Tet ((sources (get rule ‘trigger-names)))
(cond ((not (node-boundp cell))
(ctrace "7S computed ~S for its part "ST:[72s7; from pin™P T{7S™t, }7])."
smas value name sources (length sources) sources)
(setf (node-contents cell) value)
(setf (node-boundp cell) t)
{setf (node-supplier cell) cell)
(setf (nod2-rule cell) rule)
(awaken-all (node-cells cell)))
({not (equal (node-contents cell) value))
(lose "Contradictory values at ~S: ~S says =S, but ~S says ~S."
{cell-id cell)
{node-supplier cell)
(node-contents cell)
smee

value)))))
Compare this with Table 2-11 (page 57).

Tanr 3-8, Definition of setc for Handling Dependencics.

3.3. Producing Explanations

All the machinery for maintaining dependency information in the constraint network is now
in place. The remaining new code uscs this information to generate explanations.

The code for why appears in ‘Table 3-9. It is complicated only because there are several cases,
and because cach casc tries to format the output neatly. If the ecll has no value, then this fact is
stated; then all the possible ways of computing it in one step arc found and printed, or if none arc
found this is stated. If the cell has a value, then the valuc is printed, and if the given cell is not the
supplicr the connection to the supplier is mentioned; then the supplicr may be a constant or may
be a pin of a constraint, and in the latter case the relevant rule and its triggers are printed. (The
function cell-goodname constructs a “good™ name for the cell, onc the user is most likcly to
find useful.)

The information printed by why-ultimately includes the premises of the value asked
about. These arc all the values used to compute the given value which do not have any ancestors;
that is, the premises are the ultimate ancestor values of the given value.

Table 3-10 gives a straightforward but potentially incfficient aigorithm for computing the set
of premises, given a ccll. If the ccll has no value, it has no premises. IF it is a constant, then it is its
own premise. Qtherwise the set of premiscs is the union of the scts of premiscs for the triggers of
the rule used to compute the valuc in the cell. This algorithm is recursive, and performs a tree walk

§33 Producing Explanations 83

(defun why (cell)
{require-cell cell) .
(cond ((not (node-boundp cell))
(format t "~%:”S has no value." (cell-id cell))
(Tet ((fTag ()})
(dolist (c (node-cells cell))
(and (cell-owner ¢)
(dolist (rule (ctype-rules (con-ctype (cell-owner c))))
(let ((trigger-names (get rule ‘trigger-names))
(output-names (getl rule ‘output-names)))
(cond ((memq (cell-name c¢) output-names)
{format t "":[I could compute it™;~
i oor]”
flag)
(setq flag t)
(format t "7%; from ~:[72¢~;pin™P ~(7S$7t, "} of ~)”
“S by rule ~S"
trigger-names
(length trigger-names)
trigger-names
(con-name (cell-owner c))
rule)))))))
(format t "7:[I don’t have any way to compute it.”;.~]" flag)))
(t (format t “"%.The value °S is in 7S because "
{(node-contents cell) (cell~id cell))
(let ((s (node-supplier cell)))
(or (eq s c8ll)
(format t "that is connected to ™S, %; and " (cell-goodname s)))
(if (nvll (cell-owner s))
(format -t "that is a constant.”)

(format t "7:[~;7%: “1°S computed it using rule ~S~
“e["%; from: T:{7S (7S)7:[Te™; = TST]7:t, "})."
(eq s cell)

(cell-owner s)

(node-rule s)

(forlist (trigger-name (get (node-rule s) ‘trigger-names))

{let ((cell (sthe trigger-name (cell-owner s))))
(1ist (cell-id cell)

trigger-name
(node-boundp cell)
{node-contents cell)))))))))

'q.0.4.)

(defun cell-goodname (cell)
(require-cell cell)
(cond ((globalp cell) (cell-name cell))
({(constantp cell) (cell-id cell))
(t (1ist ’the (cell-name cell) (con-name (cell-owner cell))))))

Tannii3-9. Code for why: Generating o One-Step Explanition.

on the dependency structure. Incfficiency arises when the dependency graph is not strictly a tree,
but contains many shased subtreces; in the worst case it may take exponential time in the size of the
network to compute that set, for example on the network of Figure 3-2.

-

84 CHAPTER THREE DEPENDENCH'S

(defun premises (cell)
(require-cell cell)
(cond ((not (node-boundp cell)) /())
{t (Yet {(s {(node-supplier cell)))
(if (null (cell-owner s))
(list s)
(do ((tns (get (node-rule s) ‘trigger-names) (cdr tns))
(p () (uniong (premises («the (car tns) (cell-owner s))) p}))
{(null tns) p)))))))

TasLE 3-10. Calculation of the Premises Supporting a Value,

P+ L+

4 8 16 " gnet

FIGURE 3-2. A Dependency Structure for Which premises Takes Exponentiadl Time,

Table 3-11 gives an algorithm that avoids such exponential behavior by marking nodes as they
are visited. The macros mark-node, unmark-node, and markp arc uscd to sct, clear, and test
a (normally clear) mark bit associated with cach node. ‘The structure of the algorithm is much
the same, except that every node visited is marked, and when a marked node is encountered that
branch of the search is cut off. Morcover, since cvery premise will be counted exactly once, the
set-union operation unionq (which climinates duplicate entries) can be replaced by the faster list-
concatenation operation nconc. After the sct of premiscs has been collected, however, another
pass is nceded to clear all the marks again (because it is assumed that all marks are initially clear).
Thus for dependency structures with no sharing of sub-trees this algorithin may be slower by a
constant factor duc to overhead (but remeinber that the first algorithm may be exponentially stower
than the fast onc in other cascs!).

Digression. Another possible approach depends heavily on an underlying garbage collector (which in fact
exists in this tisp-based inplementation). Rather than using a mark bit, a mark object is used which
is uniquely generated for cach applicition of fast-premises. When fast-premises is called, ot
generates i new storage object, stores s object i the mark component of every visited node. Thus
markp merely tests whether the mark component is this object. The generated object cannot be contused
with one gencrated for cither an carlier or o Laer call 10 fast-premises. Confusion could only arise
if such an object were re-used while a pointer to at resided i some node; but the garbage collector
guarantees that this cinnot oceur. (This idea s due 10 Gerald Jay Sussman.)

One can say that @ global process is needed so oS not 10 confuse one marking with amother. The
function fast-premises-unmark constidics one such process. The technigue discussed here pushed
that work onto the garbage collector, an afready existing global process.

e
¥~
&

h

§3.3 Producing Explanations 85

(defmacro mark-node (cell) +(setf (node-mark ,cell) t))
{defmacro unmark-node (cell) ¢(setf (node-mark ,cell) ()))
‘{defmacro markp (cell) :(node-mark ,cell))

(defun fast-premises (cell)
(require-cell cell)
(progl (fast-premises-mark cell) (fast-premises-unmark ceil)))

(defun fast-premises-mark (cell)
(require-cell cell)
(and (node-boundp cell)
(let ((s (node-supplier cell)))
(cond ((markp s) ’())
(t (mark-node s)
(if (null (cell-owner s))
(list s)
(do ((tns (get (node-rule s) ‘trigger-names) (cdr tns))
(p '() (nconc (Fast-premises-mark
(sthe (car tns) (cell-owner s)))
P)))
)

((null tns) p))))))))

{(defun fast-premises-unmark (cell)
(require-cell cell)
(et ((s (node-supplier cell)))
(cond ((markp s)
{unmark-node s)
{or (null (cell-owner s}))
(dolist (trigger-name (get (node-rule s) ’'trigger-names))
(fast-premises-unmark (sthe trigger-name (cell-owner s)))))))))

TABLE 3-11. Fast Calculation of Premiscs.

Note that simply gencriting a number (the “bakery ticket”™ method) o use for a mark object doesn’t
quite work—if the size of a number is finite eventually some will be re-used. Only a global process
keeping track of which numbers still reside in nodes can avoid confusion,

The number of distinet mark objects simultancously in existence need not exceed the nuiber of

nodes, plus one,
(End of digression.)

If a cell has no value, it is still possible to determince the sct of potential premiscs of the cell;
cells which, if they only had values, might cventually become premises hecause their values might
contribute to a value for the cell of interest. The function desired-premises in Table 3-12
computes this set. 1t uscs a graph-marking technique in the same manner as fast-premises.
In this casc cclls which have no value are of interest. “T'he search is more complhicated because at
cach step, if there are several constraints attached to a node, no onc of them is distinguished as
the supplicr, and no one rule distinguished as the gencrating rule: instead, all rules of all attached
constraints which might possibly compute a valuc for that node must be considered and recursively

searched.

86 CHAPTER THREE DEPENDENCIES

(defun desired-premises (cell)
(require-cell cell)
(progl (desired-premises-mark cell) (desired-premises-unmark cell)))

(defun desired-premises-mark (cell)
{(require-cell cell)
(cond ((and (not (node-boundp cell))
(not (markp cell)))
(mark-node cell)
(do ((c (node-cells cell) (cdr c))
(p () (nconc (if (null (cell-owner (car c)))
(and (globalp (car c)) (list (car c)))
(desired-premises-constraint {(car c)))
p)))
((nuil ¢} p)))))

(defun desired-premises-constraint (cell)
(require-cell cell)
(et ((p "()))

(dolist (rule (ctype-rules (con-ctype (cell-owner cell))))
(and (memq (cell-name cell) (get rule ‘output-names))
(dolist (trigger (get rule ‘trigger-names))

{setq p (nconc (desired-premises-mark
(sthe trigger (cell-owner cell)))
P)))))

P))

(defun desired-premises-unmark (cell)
{(require-call cell)
(cond ((and (not {node-boundp cell))
(markp cell))
(unmark-node cell)
(dolist {c (node-cells cell))
(and (cell-owner c)
(dolist (pin (con-values (cell-owner c)))
(desired-premises-unmark pin)))))))

(defun globalp (cell)
(require-cell cell)
(and (null (cell-owner cell)) (not (eq (cell-name cell) '?}}))

TABLE 3-12. Delermining Potential Premises for a Cell with No Value.

T

(The function globalp is a predicate which is true of cells which are neither pins nor con- .
stants.)

‘The code for why-ultimately lable 3-13), like that for why, divides into two cases. If
thie given cell is has no valuce, then that fact is stated, and if the sct of desired premisces is not empty '
its clemen.s are listed. If the cell has a value, then the possibilitics that it is not the supplier and

that the suaplicr is a constant are considered, exactly as they are for why. Then the set of premiscs
is printud; all premiscs are constants, of course, and so to help distinguish them any global names

=

P O ———" . O 1 " & IS wes s i v e o

§33 Producing Ixplanations 87

(defun why-ultimately (cell)
(require-cell cell)
(cond ((not (node-boundp cell))
(format t "“%;”S has no value." (cell-id cell))
(format t ""@[Perhaps knowing the value of ~
“{T<T%; T:15;7S TO>7tor T“}would help.”]"
(forlist (c (delq cell (desired-premises cell))) (cell-name c))))
(t (format t "7%;The value °S is in ”S because "
(node-contents cell) (cell-id cell))
(let ((s (node-supplier cell)))
(or (eq s cell)
(format t "that is connected to ~S,”%; and " (cell-goodname s)))
(if (null (cell-owner s}))
(format t "that is a constant.")
(format t "it was ultimately derived”
“8[from:":{"%; TS7@{ == "S7}7:t,7}")."
(forlist (p (premises s)) .
(cons p (mapcan #'(lambda (c)
(and (globalp c)
(list (cell-name c))))
{node-cells p)))))))))
‘q.0.d.)

Tanre 3-13. lmplementation of why-ultimately.

attached to a premisc arc also printed, preceded by ==.4

‘That's all therc isto why and why-ultimately. Simple, is it not?

The only difficulty with these explanation mechanisms is that onc provides very local informa-
tion, and the other the most global possibie information; ncither provides any sense of how the
local situation is related to its surroundings. Of course, the user can use why to chase down the
computation step-by-step, but that can produce a very long explanation full of trivial details. A long
linear cxplanation at the lowest level is much less useful than a short one mentioning high-level

goals.

4. If the sct of premises is cmpty, then the output will say “The value 43 is in CELL-27 because it was ultimately
derived.” which is admittedly cryptic. ‘This shouldn't happen with the particular primitive constraints shown so far,
but could with more bizarre constraint-types. Parl of the art of designing format messages is arranging for the
boundary cascs and condilional cascs always lo be grammatical!

88 CUAPTER THREE DEPENDENCIES

Consider the following subtraction problem . ..

342 — 173
Now. remember how we used fo do thal: three from two is nine. carry the one: and if
you're under 35 or wenl 1o a private school you say seven from three is six. but if you're
over 35 and went 1o a public school you say eight from four is six: and carry the one.
so vou have 169.
But in the new approach. as you know. the important thing is to understand
what you're doing rather than to get the right answer. Here's how they do it
now:

You can't take three from iwo,
Two is less than three.

So vou look at the four

In the tens pluce.

Now. that’s really four tens.
So you make it three tens.
Regroup.

Now instead of four in the tens place.
You've got three.
Cuuse you added one—

And you change a ten 1o ten ones.
Then you add 10 the iwo and get Iwelve
And you lake uway three—ihat's nine.

That is to say. ten— (s hat clear?)
To the two, but you cunt .

Take seven from three

So you look in the hundreds place.

From the three

You then use one

To muke ten ones

And you know why four

Plus minus-one plus ten

Is fourteen minus one:

Cuuse addition is commutative! Right!

And so you huve thirteen tens

And you take away seven Now you go back

and that leaves five! To the hundreds place,

You're left with two

And you take uwuy one
From two, and that leaves ...

(Fverybody get one? Not bad for the first day.)

Hooray for New Math,
New-ew-ew Muth,
It won't do vou a bit of good to review math;
It’s so simple.
So very simple.
That only a child can do it!
—Tom ILchrer (1965)
“New Math”
Thut Was The Year Thut Was

(Well ... six, actually, ...
but the idca is the important thing.)

§34 Representing Symbolic Results in the Network 89

3.4. Representing Symbolic Results in the Network

We return now to the problem encountered at the end of §3.1: what explanation can be given
when the computation fails to make progress? More generally, what explanation can be given
that is less local than the one-step explanation ol why but less distant than the leaves of the tree
scarched by why-ultimately? The ultimate explanation of whatever computation did or did
not occur certainly lies in the network itself, but it is not necessarily helpful simply to print the
entire network, partly because the network may be huge, and partly because it may be that most
of the network is irrelevant to the needed explanation. (By way of comparison, it is not of direct
help to answer a question like, “What are the colors of the rainbow?” by handing the inquirer an
encyclopedia—particularly if the encyclopedia is not alphabetized!—cxpecting him to read it all to
get an answer to his question.)

3.4.1. Subgraphs of (he Network May Be Printed as Algebraic Fxpressions

Here we present a new function what which produces an explanation for a cell by copying
a carcfully chosen part of the nctwork structure, with directions assigned to cdges such that the
chosen part is an acyclic dirccted graph and the cell of interest is at the root. and printing that
part as nested algebraic expressions. Suppose once again that we have created a fresh temperature
conversion network.,

(what fahrenheit)

;CELI -99 has no value. I can express it in this way:
; FAHRENHEIT = (+ (// (= 9 CENTIGRADE) 5) 32)

OKAY?

(what centigrade)

;CELL-100 has no value. I can express it in this way:
; CENTIGRADE = (// (e (- FAHRENHEIT 32) 5) 9)

O0KAY?

The function what is not performing transformations on algebraic expressions in the usual gencral
sense. Fach the algebraic expressions above is merely a way of printing (4 part of—in this case the
whole of) the network.

(what (the ¢ mult))

;CELL-94 has no value. [can express it in this way:
; (THE C MULT) = (= (- FANRENHEIT 32) 5)

OKAY?

(what (the c othermult))

gy “A_-g.w.'r .

90 CHAPTER THREE IEPENDENCIES

;CELL-98 has no value. I can express it in this way:
: (THE C OTHERMULT) = (= 9 CENTIGRADE)
OKAY?

The ¢ pins of the two multiplicrs arc connected together. However, what prints two different
expressions for them because it avoids (as a heuristic) using a constraint as pait of the exptanation

for a valueless pin of that constraint.

(variable foo)

<CELL-104 (F0O0): no value>

(== (the ¢ mult) foo)

DONE

(what fahrenheit)

;CELL-99 has no value. T can express it in this way:

FAHRENHELT = (+ (// FOO 5) 32)
;

OKAY?

(what centigrade) [
1CELL-100 has no value. I can express it in this way: 0
; CENTIGRADE = (// FOO 9) jﬁ
OKAY? i

Another heuristic is that nodes with explicit global names arc a good stopping placc. It is not neces-
sary to print the cntire network—just to indicate refationships to the “nearest neighbors™ which
have “mecaning” to the user. If the mcaning of Foo is aot clear, onc can ask what thatis.

o

§ T

'

(what foo)
;CELL-104 has no value. I can express it in this way:

. FOQ = (+ (- FAHRENHELT 32) 5)
OKAY? :

Now foo could be cxpressed in terms of cither fahrenheit or centigrade: what hap-

pened to chouse the former. ‘There may be many cquivalent expressions to usc; it is not desirable to X
print them all, and not casy to choose the best. [McAllester 1980} The version of what presented ‘
here has only a fow heosistics, and 1o simplify the presentation, no way has been provided to 1

change them. [t will serve as a modest example of what can be done, however.

l.et centigrade be given the value —40. ‘

{== centigrade (constant -40))
:|Awakening <MULT:MULTIPLIER-91> because its B got the value -40. |
r

s {<MULT:MULTIPLIER-91> computed -360 for its part C from pins A, B,
:JAwakening <OTHERMULT:MULTIPLIER-95> because its C got the value -360.
| COTHERMULT :MULTIPLIER-95> computed -72 for its part A from pins B, C.
:[Awakening <ADD:ADDER-87> because its A got the value -72,

: | <ADD: ADDER-87> computed -40 for its part C from pins A, B.

; JAwakening <ADD:ADDER-87> because its C got the value -40.

: |Awakening <OTHERMULT:MULTIPLIER-95> because its A got the value -72.

§34.1 Representing Symbolic Results in the Network 91

; |Awakening <MULT:MULTIPLIER-91> because its got the value -360.
DONE .

Notc that much less ctrace output is generated this time (thanks to the changes to process-setc
in Table 3-8).

(what fahrenheit) .

;The value -40 in CELL-99 was computed in this way:
; FAHRENHEIT « (+ (// (= 9 CENTIGRADE) 5) 32)

; CENTIGRADE « -40

OKAY?

In this case the heuristic is to explain the value completely. The entire computation is printed. In
order to take advantage of nested expression notation, what avoids using intermediate names like
foo. However, it docs usc the naine cent igrade to identify the constant —40 to distinguish it
from the other constants. The variable name foo still exists, of course; what has mercly choscn
not to use it.

(what foo)

:The value -360 in CELL-104 was computed in this way:
i FO0 « (» 9 CENTIGRADE)

i CENTIGRADE « -40

OKAY?

(what centigrade)

;The value -40 in CELL-100 was computed in this way:
: CENTIGRADE « -40

OKAY?

Explanations of intermediate stages are also casily gencrated. This time foo is cxplained in terms
of centigrade rather than fahrenheit, since the value was derived from centigrade.

Now suppose that instead of — 40, the value 37 is given to centigrade (in a fresh tempera-
ture conversion network). Recall that this computation will “*fail” because of inexact division.

(== centigrade (constant 37))

;|Awakening <MULT:MULTIPLIER-110> because its B got the value 37.
:{<MULT:MULTIPLIER-110> computed 333 for its part C from pins A, B,
:|Awakening <OTHERMULT:MULTIPLIER-114> because its C got the value 333.
: |Awakening <MULT:MULTIPLIER-110> because its C got the value 333.

DONE

(what fahrenheit) ‘

;CELL-118 has no value. I can express it in this way:

: FAHRENHEIT = (+ (// 333 5) 32)

0KAY?

I
iz
i
3 !
. : 3
92 CHAPTER THREE ‘ DEPENDENCIES M
; 5
P1 P2 P3 P4 1

L
ol

L) . 1

FiGURre 3-3. Constrawining Four Points to be Equally Spaced.
Here what claims that fahrenheit “has no value™. However, it is able to print out an expres- i
sion for it entircly in terms of constants, Except that it is not in reduced form. this is the form of T

mmwcrwcnﬂgncumCUmywamznnucdnumbcns

‘The ability of what to dcal rcasonably with nctworks containing cycles has not been
demonstrated, as the temperature conversion network has no cycles. For another example Iet us use
an cxtension of the nctwork of Figure 2-10 (page 64) for spacing four points equally (sce Figure 3- ;.
3). - N

o -

(defun test ()
(variable pl)
(variable p2)
(variable p3)
(variable p4)
(create a12 adder)
(create a2l adder)
(create a34 adder)

== (the a al12) pil)

== (the ¢ al2) p2)

== (the b a12) (the b a23))

== (the a a23) p2)

== (the c a23) p3)

== (the b a23) (the b a34}))

(== (the a a34) p3) !
c

== (the add) p4))

S. Production of a reduced form cannot be done purely by local propagation anyway: it requires algehra The steps are:
32-F 33375 — 321 (330 4-3)/5 - 324 (330/5-}-3/5) — 32 |- (66-4-3/5) — (32-F66)4-3/5 — 98- +3/5,
which requires (among other things) distribution of division over addition and associtivity of addition, as well as
two simple local arithmetic operations and one “non-deterministic” (actually guided by the requirements of “reduced
form™) reverse-addition splitting of 333 into 330 4 3.

§34.1 Representing Symbolic Results in the Network 93

P1 P3 P4

2

Y

-
' o

FIGURE 3-4. Computing Fygual Spacing for Four Points.

"Ihese are all the statements for constructing the four-point cqual-spacing network, packaged up as
a 11sr function called test. Exccuting this function will thus construct an instance of the equal-
spacing network. %

(TEST)

DONE

(what p1)

;CELL-151 has no value. I can express it ian this way:
v Pl = (- P2 (- P3 P2))

OKAY?

(what p2)

;CELL-152 has no value. I can express it in this way:
; P2 = (-~ P3 (- P2 P1))

OKAY?

(what p3)

;CELL-153 has no value. [can express it in this way:
; P3 = (- P4 (- P2 P1))

OKAY?

(what p4)

;CELL-154 has no value. I can express it in this way:
; P4 = (+ P3 (- P2 P1))

OKAY?

In cach case, what docsn’t run off and print the entire network, but just cnough to give a feel for
the focal connections. Note that three of the equations are not circular; this is somewhat acciden-
tal. However, in describing p1 the expression (- p3 p2) was used rather than (- p2 p1)
because the adder needed for the latter had already been used for the outer subtraction. In this
limited (and locally defined?) sense, circularity is avoided in the explanations.

6. Use of a 1iSP function definition in his way is of course abo outside the defined constraint language. ‘This is yet
another example of how the facilities of the meta-language can be used (o augment the usability of a toy language
until the latter grows to the point of providing such faciltics itself. Defining and using a function like test is much
casicr than typing a dozcn or two statements cach time the nctwork is nceded. Liventually an cquivalent facility wall
be provided in the constraint language itself. '

AD=A096 556

UNCLASSIF IED

MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/G 9/2

THE DEFINITION AND IMPLEMENTATION OF A COMPUTER PROGRAMMING LAN-=ETC(U)
AUG 80 G L STEELE NﬂODlR-BO—C'OSDS
AI-TR=595

2UF |IIIII|IIIII||IIIII||II|II||IIII||IIII||IIIII|III|||IIIII|III|I|II||II|IIIII

94 CHAPTER TUHREE DIEPENDENCIES

|

(== p1 (constant 3))

: |Awakening <A12:ADDER-155> because its A got the value 3.

DONE

(== p2 (constant 5))

; |Awakening <A23:ADDER-159> because its A got the value 5.

;JAwakening <A12:ADDER-155> because its C got tho value 5.

;|<A12:ADDER-155> computed 2 for its part B from pins A, C.
:{Awakening <A12:ADDER-155> because its B got the value 2.

: |Awakening <A23:ADDER-159> because its B got the value 2.

i |<A23:ADDER-159> computed 7 for its part C from pins A, 8.
i |[Awakening <A34:ADDER-163> because its A got the value 7.

i |<A34:ADDER-163> computed 9 for its part C from pins A, B.
: JAwakening <A34:ADDER-163> because its C got the value 9.

: [Awakening <A23:ADDER-159> because its C got the value 7.

i jAwakening <A34:ADDER-163> because its B got the value 2.

DONE

Presumably now p3 = 7 and p4 = 9. (Sce Figure 3-4.) i

(what p3)
:The value 7 in CELL-153 was computed in this way:
i P3 « (+ P2 (- P2 P1))

.
i P2 e5 ".5
i P1Le3 x|
OKAY? b
Okay! This is a reasonable cxplanation. Again, note that if a constant has a global name associated 3

with it, that name is used.

(what p4)

:The value 9 in CELL-154 was computed in this way:
H P4 « (+ (+ P2 (THE B A12)) (THE B A12))

: (THE B A12) « (- P2 P1)

i P2e5 {
H P1 « 3
OKAY? : i

Here the result of the computation (- p2 p1) must be used twice in the expression describing]
p4 because in fact the value was used in two different ways during the course of the computation. o
However, what avoids giving the impression that parts of the network are duplicated. Since there
is no global name for the intermediate quantity, the name (the b a12) of the supplying pin is
uscd to naine the quantity. !

G-

(variable spacing)

<CELL-169 (SPACING): no value>
(== spacing (the b a12))

DONE

§34.2 Representing Symbolic Results in the Network

95

r——— .
(defun what (cell)
(require-cell cell),
{(cond ((not (node-boundp cell))
(format t ""%;”S has no value. I can express it in this way:~
™% 7S = TST)”
(cell-id cell) (tree-form cell t)))
{(t (format t ""%;The value ”S in ~S was computed in this way:™
TR TS « TSTY)”
(node-contents cell) (cell-id cell) (tree-form cell))))
‘okay?)

TaLE 3-14. Definition of the what Feplanation Function,

(what p4)

:The value 9 in CELL-154 was computed in this way:
; P4 « (+ (+ P2 SPACING) SPACING)

H SPACING ¢« (- P2 P1)

: P2 « 5
: P1 « 3
OKAY?

Oncc a global name has been supplicd, however, what is happy to usc it instead.

(what p3)
;The value 7 in CELL-153 was computed in this way:
i P3 & (+ P2 (- P2 P1))

H P2 « 5
: P1 « 3
OKAY?

On the other hand, the extra name is not used if it is not nccessary to avoid duplicating expressions.

The general aim of the what function is to print a relevant portion of the network. If the
portion contains no valucs, as little as possible is printed to relate the cell of interest to globally
named cells and constants. If the ccll of interest contains a value, then the entire computation
of that valuc is displayed (which for a large network might still be too much, actually); nested al-
gebraic expressions are used as much as possible, but intermediate names arc introduced to denote
constants and quantitics which must be mentioned more than once. Whenever an intermediate
quantity must be named an attempt is made to locally determine the “best™ name for it; but no

morc global criterion is used to choose one expression over another. [McAllester 1980]

e ik S

9 CUAPTYER THRER IPENDENCIES

ey

(defmacro nummark (cell)
s(setf (node-mark ,cell)

(if (numberp (node-mark ,cell)) (+ (node-mark ,cell) 1) 1)))
(defmacro unnummark {(cell) +(setf (node-mark ,cell) ()))

(defmacro nummarkp (cell) :(numberp (node-mark ,cell)))
(defmacro singlenummarkp (cell) :(equal (node-mark ,cell) 1))

(defprop adder ((c (+ a b)) (b (- c a)) (a (- ¢ b))) treeforms)

(defprop multiplier ((c (» a b)) (b (// c a)) (a (// c b))) treeforms)
(defprop maxer ((c (max a b)) (b (arcmax c a)) (a (arcmax c b))) treeforms)
{defprop minner {(c (min a b)) (b (arcmin ¢ a)) (a (arcmin ¢ b))) treeforms)
. (defprop equality ({p (= a b)) (b (arc= p a)) (a (arc= p b))) treeforms)
(defprop gate ((p (0-if-unequal a b)) (b (-> p a)) (a (-> p b})) treeforms)

(defun tree-form (cell &optional (shallow ()))
(require-cell cell)
(nummark cell)
(prog2 (tree-form-trace cell shallow)
(tree-form-gather cell shallow)
(tree-form-unmark cell)}))

TABLE 3-1S. The tree-form Function and Macros for Numerical Marks.

34.2. Choosing a Subgraph is Guided by Dependencies and Better-Name Heuristics

‘The code for what itsclf is fairly simple (Table 3-14), but it uses a rather complicated mark-
ing routine tree-form. This routine traces out an appropriate subgraph of the network graph,
marking it out as it goces, then copics the subgraph in the form of a LISP s-cxpression (actually a list
of cquations), and finally clcans up by resetting all mark bits,

The tree-form function, like fast-premises and desired-premises, uses graph-
marking techniques. [n this case, however, a three-state mark bit is required, because it is of interest
to know whether a node has been visited not at all, once, or more than once. Thus the mark may be
thought of as a reference count, possibly with a cciling at 2. ‘The macros nummark, unnummark,
and nummarkp (table 3-15) implement such a reference count (with no ceiling) using the mark
component of the node’s repository. The normal value of such a counter should be zcro, but for
compatibility with the other graph-tracing routinges these macros arrange to treat false as zero,

Also in Table 3-15 is a little data basc of algebraic forms to use when copying portions of
the network. Associated with cach constraint-type is a table which, for cach pin of a constraint,
illustrates how to represent that pin in terms of other pins (not necessarily all the others, though
that is so for our example constraint-types) in 1L1SP prefix form. ‘Thus for an adder the ¢ pin can be
represented as the sum of a and b, the b pin as the difference of ¢ and a, and so on.”

7. Actually, these formals might more uscfully be associated with individual rules to handle special cases—for example,
in the casc of multiplication by zcro, the value of the other inpul need not enter into the cxpression However, it
was done this way (the “kludge it in quickly by hanging it from a property list” technigue) so as not lo have to
again revise the formal of defrule: after all, this data base is a specialized one purely for the bhenefit of what)

LY

PRV

e

§34.2 Representing Symbolic Results in the Network 97

The function tree-form first marks the given node by using nummark; then it calls
tree-form~trace to tricc out a subgraph of interest; next it uses tree-form-gather to
copy the traced-out subgraph as a 11SP list of equations; and finally it asks tree-form-unmark
to clean up the marker counts.

The function tree-form-trace (Table 3-16) rccursively marks out a subgraph explaining
the value or non-value of the given node. The general idea is that if the nedce has a value, then we
arc tracing out. by following the supplicr chain, the computation which produced the value; but if
the node has no value, then we trace out any single potential computation.

‘IThe node given to tree-form-trace must alrcady have been marked by the caller, and
determined by the cafler to have been the first time that node was marked. (This is trivially the
case for the top-level invocation of tree-form-trace within tree-form.) ‘IThe shallow
flag indicates whether or not a full tracing out is desired: if it is sct, the tracing may stop when a
node with a valuc or a global name is encountered: but if not, then it must procced until it can go
no farther. 1f the node has a value, then the supplicr is examined. 1f it has an owner, then it is a pin
of that owner, and the computations for the sources (the input pins for the rule that computed the
value for the supplicr) are recursively traced, ualess the shallow flag is truc. If the supplicr has
no owner, it is a constant, and as a special kludge it is marked again: the cffect of this is to make it
appear to be visited more than once, which will cause tree-form~-gather to try to find a name
for it (scc below). 1€ the node has no value, then a supplicr is artificially and arbitrarily chosen for
the ccll. If the shallow flag is set, then the artificial supplier will preferably be a global cell; if not,
then preferably a pin of a constraint. 1f no other cell of the node will do. then as a last resort the
given cell is deemed to be its own supplier; if it is a pin, then tree-form-deep-trace iscalled
to trace its sourccs.

‘I'he function tree-form-trace-set takes aconstraint and a list of pin names and traces
from all the pins named. {t first marks cach of the pins, and adds those visited for the first time to
a queue; then all the nodes on the queue are traced. It is very important that all pins be marked
before any are traced—otherwise circular explanations can arise. The function tree-form-tag
marks a node, then returns a list of the node (i.c., of its representative ccll) if the node had
previously been unmarked, and otherwise returns an cmpty list,

Digression.l ooking back on it, tree-form-tag might have been written more simply as:

(defun tree-form-tag (cell)
(nummark cell)
(and (singlenummarkp cell) (1ist cell)))

I wonder why | did it the more complicated wiy? Probably because | was thinking of the cell i being
unmarked before the visi, sather than as begin singly aurked after the sisit. 1 have deaded 1o show
both versions here 1o indicate how one’s point of view can affect the way o program is written,

(Ind of digression.)

e ————— e

98 Cnartir TURER DEPENDENCIES

{defun tree-form-trace (cell shallow)
(require-cell cell)
(cond ((node-boundp cell)’
(let ((s (node-supplier cell)))
r (cond ((cell-own.r s)
(or shallow
(tree-form-trace-set (cell-owner s)
(get (node-rule s) ‘trigger-names)
shallow)))
(t (nummark cell)}))) icrock
(t (let ((cells {(node-cells cell)))
(setf (node-supplier cell)
(or (if shallow
(or (tree-form-shallow cell cells)
(tree-form-deep cell cells shallow))
(or (tree-form-deep cell cells shallow)
(tree-form-shallow cell cells)))
(if (cell-owner cell)
(tree-form-deep-trace cell shallow)

cell)))))))

(defun tree-form-trace-set (owner names shallow)
(do ((n names (cdr n))
{queue ‘() (nconc (tree-form-tag (ethe (car n) owner)) queue)))
((null n) (dolist (c queue) (tree-form-trace ¢ shallow)))))

(defun tree-form-tag (cell)
{(and (not (prog! (nummarkp cell) (nummark cell)))
(list cell)))

(defun tree-form-shallow (cell cells)
{do ({c cells (cdr c)))
((null ¢) ()
(and (not (eq (car c) cell))
(globalp (car c))
(returan (car c)))))

(defun tree-form-deep (cell cells shallow)
(do ((z cells (cdr z}))
((nul1 z) ())
(and (not (eq (car z) cell))
(cell-owner (car z)) 1
(return (tree-form-deep-trace (car z) shallow)))}))

(defun tree-form-deep-trace (cell shallow)
(let ((treeform
(cadr (assq (cell-name cell) 1
(get (ctype-name (con-ctype {cell-owner cell)))
‘treeforms)))))
{tree-form-trace-set (cell-owner cell) (cdr treeform) shallow) ’
cell))

TABLE 3-16. Tracing Out a Subgraph of Interest for what.

‘The function tree-form-shallow trics o find a global ccll in the current node which is
not the given cell. Similarly, tree-form-deep trics to find a pin in the current node other than ,4
i

h_
]
{

e

§34.2 Representing Symbolic Results in the Network 9

the given cell (and if it finds one, it recursively traces the sources, using tree-form-deep-trace,
which determines the sources by looking at the treeforms data basc.) Each of these functions
returns the desirable pscudo-supplicr cell, or false if no desirable cell is found. In this way they
signal success or failure, and the LISP or construct can be used to try one method and then another
in tree-form-trace.

The function tree-form-gather (lTable 3-17) retraces the subgraph, starting from the
samc ccll that tree-form-trace did. and copics the traced subgraph. It returns a list of equa-
tions. Fach cquation is represented as a list of the left-hand side and the right-hand side. The Ieft-
hand side is always the name of a cell; the right-hand side is & formula. Hencee, taken in the correct
order (roughly last to first. though this property is not guaranteed). these equations represent a set
of TORTRAN-stylc assignment statements for the computation.

The general idea is that the tree traced is copicd as an aigebraic expression. Whenever a node
is encountered which has been marked more than once, then the computation for that node must
be cxpressed as a scparate equation defining a name for that node; then 2hic name for that node
can be used in other cquations to represent that node. This is necessary to avoid duplication of
shared sub-computations, Nodes which have been marked more than once are called curs. because
they divide the traced subgraph into portions which are trees in the strict sensc. Fach of these strict
trees can be represented by a nested algebraic expression, but cach cut requires a new cquation.
(The kludge in tree-form-trace mentioned above, where a constant is purposely marked an
extra timg, is to dclude tree-form-gather (actually tree-form-chase) into thinking that
the constant is a cut; this will force it to try to create an cxtra cquation in order to give a name o
the constant.)

A queuing mechanism is used within tree-form-gather. The variable scutse contains
a qucuc of nodes which are cuts and which have yct to have cquations computed for them.
At cach iteration one cut node is dequcued and the strict tree it heads is recursively copied by
tree-form-chase, which when it reaches the leaves of the struct trec may cnqucuc other cut
nodes. The variable =allcutse contains the sct of all nodes cver enqucucd onto scutse;
this is used to prevent the same cut node from being enqueued more than oance. ‘The list
saxtra-equationss is alist of cquations added to by tree-form-chase when an cquation
to name a constant must be created. This is kept as a separate list rather than adding these extra
cquations directly to the listin equat ions purely so that all such name: constants will appear at
the end of the final list of equations.

The first thing tree-form-chase docs is check the supplier of the given nodc; this may be
a truc supplicr (if the nodc has a value), or an artificial supplicr (if it does not). If the node has a
value and the shallow flag is sct. then the value itself represents the node. Now top is a flag
indicating whether or not this call to tree-form-chase is on the root of a strict tree (which may
occur if the node is the node given to what, or if the node is a cut node). Only if this is not the top

e ————— e

e W e .

100 CuaPTER TUREE DIPENDEENCIHES

N - e e e

(declare (special scutss sallcutse soxtra-equationss))

(defun tree-form-gather {cell shallow)

(require-cell cell)

(do ((scutse (list cell))
(sallcutses (1ist cell))
(equations ’())
(sextra-equationse ‘()))
({(null sculss) (nreverse (append esextra-equationss equations)))

{(lel ((cut (pop =cutse)))
(push (listi (cell-goodname cut) (tree-form-chase cut shallow t))
equations))))

(defun tree-form-chase (cell shallow top)
(require-cell cell)
(let ((s (node-supplier cell)))
(cond ((and shatlow (node-boundp cell)) (node-contents cell))
((and (not top) (not (singlenummarkp s)))
(cond ((constantp s)
(do ((c (node-cells s) (cdr c)))
((rull c) (node-contents s))
{(cond ((globalp {car c))
{cond ((not (memq (car c) sallcutss))
{(push (car c) eallcutse)
(push (list (cell-name (car c)) (node-contents s))
sextra-equationss)))
(return (celli-name (car c¢)))))))
(t (1et ((best (do ({c (node-cells s) (cdr c)))
({(null c) s)
(and (not (eq (car c) s))
(globalp (car c))
(return (car ¢))))))
{cond ((and (not (and (eq best s) {(globalp s)))
(not (memq best eallcutss)))
(push best =allcutss)
(push best sculse)))
{(cell-goodname best)))))
((cell-owner s)
(let ((treeform (cadr (assq (cell-name s)
(get (ctype-name (con-ctype (cell-owner s)))
'treeforms)})))
(cons (car treeform)
(foriist (n (cdr treeform))
(cond ((and (node-boundp s)
(not (memq n (get (node-rule s) ’‘trigger-names))))

I?)

(t (tree-form-chase (esthe n (cell-owner s))
shallow
ONMNMN)

((globalp s) (cell-name s))
(t (node-contents s)))))

Tante 3-17. Copying a Traced Subgraph as a Sct of Fquations.

node doces tree-form-chase want to check for its being a cut node (visited more than once by
tree-form-trace). Ifitis a cut node other than the top, then the supplier may be a constant or

§342 Represeuting Symbolic Results in the Network 101

something clse. 1f a constant, then an attempt is made o find a global cell within the same node, to
serve as a name for the constant. If one is found. that is returned, and an equation identifying the
name with the constant is added to sextra-equationss= (if it has not already been added): but
if one is not found, the constant itself is returned. It the cut node’s supplicr is not a constant, then
a similar scarch for a global name is made: cither such a name, or ¢lse the supplier’s name (which
if the supplier is a pin looks like (the foo bar)). is chosen to name the cut node The node is
queued as a cut node it it has not already ever been queued wnd if the supplier s not a global ¢ell
artificially chosen to be the supplier (in which case there is no way to express that name in terms of
something else. so no cquation is needed).

If the node is not to be treated as a cut node, then there are three cases: the supplier may be a
constant, a global cell, or a pin, For a constant the value is returned; because tree-form-trace
always marks nodes with constant suppliers as cut nodes. this case can only arise when the top
flag is sct. 1<or a global ccll, its name iy returned: this can only occur when the global cell has
been chosen as an artifical supplier. FFor a pin, the associated expression fonm is fetched from the
treeforms data basc: then cach input pin named in the expression form is cecursively chased
and the resulting expression filled in as i sub-capression of the treeform for this node. An excep-
tion is that if this node has a value, then the rule used to compute it is examined. and if an input pin
named in the expression form was not actually a trigger for the rule, then 2?7 is filled in for that pin
in the form. "This is a crude attempt to take into account things like the multiplication-by-z¢ro rule,
IFor example:

(create m multiplier)

(M:MULTIPLIER-44>

(what (the c m))

;CELL-47 has no value. I can express it in this way:
: (THE C M) = (= (THE A M) (THE B M))

: (THE B M) = (// (THE C M) (THE A M))

: (THL A M) = (// (THE C M) (THE B M))
OKAY?

(This is an cxample of a strange case that occurs when a node is a “dead end™ (a leaf of the
computation tiee) for the tree-form-trace scarch, and the node’s sole cell is a pin. ‘The pin
must serve as its own supplicr, and so tree-form-chase belicves that this supplicr must be
expressed as an expression, [f global names were given (o (the a m) and (the b m) then this
anomaly would not oceur. Alternatively, the tree-form code could be made more complex, but
1 didn't feel like doing this.)

== (the a m) (constant 0))

;|Awakening <M:MULTIPL.IER-44> because its A got the value 0.
1| <M:MULTIPLIER-44> computed 0 for its part C from pin A,
;|Awakening <M:MULTIPLIER-44> because its C got the value 0.
DONE

ll.l"llllll.-'-lI!-lUl-'l'll-I"l'F-'.!H-llllllIlll"lIllIlI..-IllI.l.ll".l-""-.lllllll.!¥v~

102 CHAPTER THRFE DErENpENCHS

(defun tree- form unmark (call)
(require-cell cell)
(cond ((nummarkp cell)
{unnummark cell)
(let ((s (node-supplier cell)))
(and (cell-owner s)
(dolist (pin (con-values (cell-owner s))) i
(tree-form-unmark pin))))
(or (node-boundp cell) (setf (node-supplier cell) ())))))

T 318 Rmum,, the Mark (nmpnngnl\ for U‘ee form.

L]

(what (the c m))

;The value 0 in CELL-47 was computed in this way: i
: (THE C M) « (¢ 0 7)
OKAY?

The explanation indicates that (the ¢ m) is the product of zero and something we don't much
care about (because the rule didn't).

(what (the b m))

:CELL-46 has no value. I can express it in this way:

: (THE B M) = (// 0 0)

OKAY?
Certainly (the b m) = 0/0; of course, this defines no particular value, but then again,
(the b m) indecd has no particular value.

The function tree-form-unmark (Table 3-18) is similar to fast-premises-unmark
(Table }-11) and desired-premises-unmark (Table 3-12), with the additional feature that if
a marked node is encountered which has no value, then that node’s supplicr is reset to the nutl
supplicr; this removes the artificial supplicrs introduced by tree-form-trace.

3.5. Summary of Some Uses for Dependencies

The facilities described in this chapter iflustrate the recording and some the uses of depend-
ency information. Recording dependencics amounts to remembering the history of the local
propagation. All such historics must be embedded within the structure of the constraint network;
the computation history can be represented as the directions of information flow within the net-
work, plus the computational rules used to compute new values.

Even if a computation has not been performed. or has propagated values to only as part of the
network, the structure of the network can be used to advantage, because it describes all possible
potential historics. These potential historics, if few in number or carefully chosen among. may be

uscful for analyzing the situation,

§3.5 Summary of Some Uses for Dependencies 103

Three procedures for examining a constraint network have been exhibited. The function why
traces a single actual computation step or all potential single computation steps. ‘e function
why-ultimately traccs through an entire actual computation tree (actuatly a dag—a tree, pos-
sibly with shared subtrecs) or through all possible potential trees, in effect, and exhibits the leaves
of the trees. ‘the function what traces through an cntire actual computation tree or a single,
carcfully chosen potential tree, and exhibits that tree as an algebraic expression, indicating shared
subtrees by naming them and then defining the name once o be the shared sub-cxpression.

There arc other ways of using the dependency information. For example, the notion dual
to that of the sct of premises is known as the set of repercussions—it is the sct of nodes which
have a given node as an ancestor and which are not ancestors of any other nodes. In other
words. the repercussions are the ultimate consequences of a node. IFunctions for tracing through
the network and locating the repercussions and then printing the findings in a manner similar to

why-ultimately or what would be uscful.

.-

P

Luttle fishies in the brook,

4 they do iy look and look.
Chrastimas comes but once a year.

My dad drives a peanut wagon!

—Cordon Ruthven Kerns

Chapter Four

Retraction

N HE CONSTRAINT SYSTEM developed in Chapters Two and Three, if a constant is mistakenly
connected o the wrong node, that's too bad; the user must start over from scrateh. 1f the user
wants to usc a single network to explore several cases, o tinker with parameters to see the resulting
etfects, that also is oo bad. Once a value has been computed for a node, it is tixed for all time.
Trying to change it will only produce a contradiction, causing the signalling of an irrecoverable
crror.

Mechanisms for retracting values will be developed in this chapter. This is not simply o matter
of throwing away old values and installing new ones. Values associated with other nodes may
have been computed from the setracted one, and these must also be retracted. Moreover, when a
contradiction occurs, it may bhe “far from the scene of the crime™; the contradiction may involve
not premises but derived values. Retracting a derived vatue does no good — the same value will
be recomputed from the premises. Tnstead, one of the premuses of one of the contradictory values
must be retracted. Of course, the premise-tracing machinery developed in Chapter Yhree will be of

usc for this.

4.1. Forgiving Systems

Many computer systems require a great deal of forgiving (though few deserve i), but here |
mcan that the system s forgiving—of mistakes, changes of mind, and so on, Ideally one would like

to be able to invert any action with an appropriate counter-action, and have the state of the system

104

§4.1.1 Forgiving Systems 105

be as if the action had never taken place. Here follow examples of the system allowing the user to
change his mind when some action causces a contradiction.

4.1.1. Comnecting Conflicting Cells Can Cause Contradictions

].et us re-enact the example of §2.3, where we constructed a temperature comnersion network,
cquated centigrade to —40 (which of course computed —40 for fahrenheit). and thea
cquated fahrenheit to 32,

(defun temp-converter ()
(create add adder)
(create mult multiplier)
(create othermult multiplier)
(variable fahrenheit)
(variable centigrade)
== fahrenheit (the c¢ add))
== (the b add) (constant 32)) vy
(== (the a add) (the a othermult))
(== (the c othermult) (the ¢ mult))
(
(

(the b othermult) (constant 5))
== centigrade (the b mult))
== (the a mult) (constant 9)))
TEMP-CONVERTER

This is the same definition for a temperature converter we used in Chapters Two and Three,
packaged up as a single 1 1SP function,

(temp-converter)

i |Awakening <ADD:ADDER-23> because its B got the value 32.

: |Awakening <OTHERMULT:MULTIPLIER-31> because its B got the value 5.

i {Awakening <MULT:MULTIPLIER-27> because its A got the value 9.
DONE

Now that the network has been instantiated. we equate centigrade to —40. Rather than using
the constant construct, however, we shall use default instcad. This has roughly the same
cffect; the only difference is that a default is tentative, while a constant is relatively fixed (but only
relatively).

== centigrade (default -40))

i |Awakening <MULT:MULTIPLIER-27> because its B got the value -40.

;| CMULT:MULTIPLIER-27> computed -3G0 for its part C from pins A, B.
;|Awakening COTHERMULT:MULTIPLIER-31> because its C got the value -360.
;| COTHERMULT:MULTIPLIER-31> computed -72 for its part A from pins B, C.
:|Awakening <ADD:ADOER-23> because its A got the value -72.
:[<ADD:ADDER-23> computed -40 for iis part C from pins A, B.

L2

e

[P

106 CuAaPIER FOUR RETRACTION ‘

FAHRENHEIT CENTIGRADE. | 1

40 |

} c + | 5
ADD OTHERMULT MULT ;(

;’ :

FIGURE -1 Computation of a Temperature Conversion. Using a Default Value.

i jAwakening <ADD:ADDER-23> because its C got the value -40.
i |Awakening (OTHERMULT:MULTIPLIER-31> because its A got the value -72.
: |Awakening <MULT:MULTIPLIER-27> because its C got the value -360. ’f

DONE
This process of course has computed —40 for fahrenheit. (Sce Figurce 4-1. As before, circles '%
]
with horizontal bars indicate constant values; in addition, default valucs arc drawn as plain 1
circles.) 1

(what fahrenheit)

:The value -40 in CELL-35 was computed in this way:
FAHRENHEIT « (+ (// (+ 9 CENTIGRADE) 5) 32)

i CENTIGRADE ¢ -40

OKAY?

i)

Now we come to the critical point we left off at in §2.3: what happens if fahrenheit is not

cquated to 327

(== fahrenheit (default 32))

113 Contradiction when merging the cells
; <CELL-35 (FAHRENHEIT): -40> and <CELL-41 (DEFAULT): 32>,

:i: These are the premises that seem to be at fault:
<CELL-40 (DEFAULY): -40> == CENTIGRADE,
<CELL-41 (DEFAULT): 32>.

::; Choose one of these to retract and RETURN it.
;BKPT Choose Culprit

R MR Wbk A

§4.11 Forgiving Systems 107

As before, the system has detected a conflict between the given value and the value previously
computed for fahrenheit. This time, however, the system has determined the preinises of the
conflicting values and listed them, and asked us to choose which one 10 retract. (Note that the
name of a default cellis "default™, not “?". Similarly, luter we shall sce that the name of a !
constant ccllis "constant™.) |
:
v
i

Now we are within a “breakpoint™, within which we may interact with the 1ISP system in the
usual manner. In particular. we could invoke the why and what functions to explore the network
betore choosing a cutprit.! When eventually a form (return form) is typed, then the break-
point level is exited. and the value of fornis returned and made available o the program which ,
caused the breakpoint. We will do this now: let us choose to retract the value for centigrade.

fdeiodR 2

(return centigrade) 3
;|Retracting the premise <CELL-40 (DEFAULT): -40>. 1
:|Removing -40 from CELL-40.

i |Removing -360 from (THE C MULT) because (THE B MULT)==CELL-40.

i|Removing -72 from (THE A OTHERMULT) because (THE C OTHERMULT)==(THE C MULT).

:{Removing -40 from {THE C ADD) because (THE A ADD)==(THE A OTHERMULT).

i |Awakening <ADD:ADDER-23> because its C lost its value. .1
:|Awakening <ADD:ADDER-23> because its A lost its value, j,
:[Awakening <OTHERMULT:MULTIPLIER-31>_because its A lost its value. ‘3

;|Awakening <OTHERMULT:MULTIPLIER-31> because its C lost its value.
i |Awakening <MULT:MULTIPLIER-27> because its C lost its value.
:|Awakening <MULT:MULTIPLIER-27> because its B lost its value.

: |Awakening <(ADD:ADDER-23> because its C got the value 32.
;|<ADD:ADDER-23> computed 0 for its part A from pins B, C.

; JAwakening <ADD:ADDER-23> because its A got the value O.

i |Awakening <OTHERMULT:MULTIPLIER-31> because its A got the value 0. |
; JCOTHERMULT :MULTIPLIER-31> computed 0 for its part C from pins A, B.

 |Awakening <OTHERMULT:MULTIPLIER-31> because its C got the value 0.

;JAwakening <MULT:MULTIPLIER-27> because its C got the value 0.

i |<MULT :MULTIPLIER-27> computed 0 for its part B from pins A, C.

; |Awakening <MULT:MULTIPLIER-27> because its B got the value 0.

DONE

_—y

Whew! After the value —40 was retracted for centigrade, all of the values which were
computed from that value were recursively removed. Then all the constraint devices which had ,
valucs retracted from their pins were awakened, in the hope that they could provide a value for the -

1. This is yet another exampie of how pleasant it s to implement a 1oy system by cmbedding it in a more complete
system such as LISP. Rather than having the antetaction limited to merely a choice from a menu. the user can be
given the opportunity to perform any computation before making the decision.

108 CHAPTER FFOUR RITRACHON

—_— [- e e ettt T

CENTIGRADE
‘ OTHERMULT

FAHRENHEIT

32

| FIGURES-2. Recomputation of o Temperature Conversion,

muncdehnnphL?NculhchWVMUc32fbrfahrenheit was installed, and the usual process
of local propagation procceded from there. ‘The resultis pictured in Figure 4-2. We can ask what
about the value in fahrenheit.

(what fahrenheit)

;:The value 32 in CELL-35 was computed in this way:
; FAHRENHEIT « 32

OKAY?

(what centigrade)

:The value 0 in CELL-36 was computed in this way:
CENTIGRADE « (// (s (- FAHRENHEIT 32) 5) 9)

; FAHRENHELIT « 32

OKAY?

Fverything is just as if we had originally given the value 32 to fahrenheit, and had never given
the value —40 to centigrade in the first place,

When the contradiction occurred above, the computed value for fahrenheit had been
derived not only from the value for centigrade, but also from the constants 5. 9, and 32.
However, these constants were not listed among the choices for retraction. This illustrates the one
difference between the constant and default constructs—if a contradiction is derived from
at least onc default valuc. then only default values are considered for retraction. If the

2 Presumabiy this would be the saime value that was retracted THowever, a constraimt device might be an subsidiary
supplicr of the vatue rather than, the primary supphier - When the primany supphier s then retiacted, subsidian
suppliers then have a chance 10 hecome the primary supphier. fhus, ather than recording mutuple justilications for
aalue, a8 [Stallman 1977), [Dovle 1978a). [Dosle 1978b), {McAllester 1978] and [Doyle 1979), thi ssstem merely
recomputes value when necessary (presumably involving only a single computadtton step in cach case)

———

ottt B S e il

§4.1.1 Forgiving Systems 109

FAHRENHEIT CENTIGRADE

68

OTHERMULT

. e s

FIGURES-3. Another Recomputation of a Temperature Conversion.

contradiction rests solely on constaat valucs, however, then the system will consider retracting a
constant. > To further illustrate the distinction, let us now fix centigrade as the constant 20

(== centigrade (constant 20))

i.: Contradiction when merging the cells
; C(CELL-36 (CENTIGRADE): 0> and <CELL-42 (CONSTANT):
i|Retracting the premise <CELL-41 (DEFAULT): 32>.
:{Removing 32 from CELL-41.
;|Removing 0 from (THE A ADD) because (THE C ALD)==CELL-41.
:|Removing 0 from (THE C OTHERMULT) because (THE A OTHERMULT)==(THE A ADD).
;{Removing 0 from (THE B MULT) because (THE C MULT)==(THE C OTHERMULT).
:|{Awakening <MULT:MULTIPLIER-27> because its B lost its value.
;|Awakening COTHERMULT:MULTIPLIER-31> because its C iost its value.
i |Awakening <MULT:MULTIPLIER-27> because its C lost its value.
:|Awakening <ADD:ADDER-23> because its A lost its value.
i |Awakening <OTHERMULT:MULTIPLIER-31> because its A lost its value.
:|Awakening <ADD:ADDER-23> because its C lost its value.
;|Awakening <MUL(:MULTIPLIER-27> because its B got the value 20.
+]<MULT:MULTIPLIER-27> computed 180 for its part C from pins A, B.
;|Awakening <OTHERMULT:MULTIPLIER-31> because its C got the value 180,
;| COTHERMULT :MULTIPLIER-31> computed 36 for its part A from pins B, C.
;|Awakening <ADD:ADDER-23> because its A got the value 36.
;| <ADD:ADDER-23> computed 68 for its part C from pins A, B. ,
;|Awakening <ADD:ADDER-23> because its C got the value 68. 1
;|Awakening <OTHERMULT:MULTIPLIER-31> because its A got the value 36,
:|Awakening <MULT:MULTIPLIER-27> because its C got the value 180.
OONE

3 Onc might argue that this should constitute a hard crror as before. However. the ability to retract a constant is

not difficult to provide, and the system can inform the user of the situalion and Jet i decide whether or not to -
tamper with a “constant of the universe”. S

110 CuaprrTeR FOUR RITRACHION

It doesn't show clearly here, but in fact the conflict is between the new value 20, a constant, and
the old value 0, whiclt was derived from various constants and a single default valuc. The
system concluded that as there was precisely one default valuc involved, it might as well retract
it automatically and not even bother us with it.

(what fahrenheit)

;:The value 68 in CELL-35 was computed in this way:
FAHRENHEIT « (+ (// (» 9 CENTIGRADE) 5) 32)

H CENTIGRADE « 20

OKAY?

Now fahrenheit = 68, computed from centigrade = 20 (Figurc 4-3).
If we now try to ecquate fahrenheit toa default value, the system “bounces back™. ‘The
default value comes into conflict with hard constants, and so is inmediatcly rejected.
(== fahrenheit (default 41))
i::; Contradiction when merging the cells
: CCELL-35 (FAHRENHEIT): 68> and <CELL-43 (DEFAULT): 41>,
;|Retracting the premise <CELL-43 (DEFAULT): 41>.

i |Removing 41 from CELL-43.
DONE

If we really want fahrenheit to be 41, we had better fight constants with constants!
(== fahrenheit (constant 41))

1;: Contradiction when merging the cells

: CCELL-35 (FAHRENHEIT): 68> and <CELL-44 (CONSTANT): 41>.
i:: These are the premises that seem to be at fault:

H <CELL-44 (CONSTANT): 41>,

' CCELL-37 (CONSTANT): 32>,

<CELL-42 (CONSTANT): 20> == CENTIGRADE,
CCELL-39 (CONSTANT): 9>,

: CCELL-38 (CONSTANT): 5>.

::: Choose one of these to retract and RETURN it.
:BKPT Choose Culprit

‘This contradiction involves only constant values, and so onc of them must be chosen for retrac-

tion,

(return centigrade)

;|Retracting the premise <CELL-42 (CONSTANT): 20>.

;|Removing 20 from CELL-42.

i JRemoving 180 from (THE C MULT) because (THE B MULT)==CELL-42.

i [Removing 36 from (THE A OTHERMULT) because (THE C OTHERMULT)==(THE C MULT).

:|Removing 68 from (THE C ADD) because (THE A ADD)==(THE A OTHERMULT).

§4.1.2 lorgiving Systems 111

: |JAwakening <ADD:ADDER-23> because its C lost its value.

:|Awakening <ADD:ADDER-23> because its A lost its value.

:|Awakening <OTHERMULT:MULTIPLIER-31> because its A lost its value.

s |Awakening <OTHERMULT:MULTIPLIER-31> because its C lost its value.

i |Awakening <MULT:MULTIPLIER-27> because its C lost its value.
:|Awakening <MULT:MULTIPLIER-27> because its B lost its value.

; |Awakening <ADD:ADDER-23> because its C got the value 41,

: |<ADD:ADDER-23> computed 9 for its part A from pins B, C.

i |Awakening <ADD:ADDCR-23> because its A got the value 9.

:|Awakening <OTHERMULT:MULTIPLIER-31> because its A got the value 9.
; |COTHERMULT :MULTIPLIER-31> computed 45 for its part C from pins A, B.
;|Awakening <OTHERMULT:MULTIPLIER-31> because its C got the value 45.
i |Awakening <MULT:MULTIPLIER-27> because its C got the value 45.

| <MULT:MULTIPLIER-27> computed 5 for its part B from pins A, C.

i |Awakening <MULT:MULTIPLIER-27> because its B got the value 5.

DONE

The constant 20 cquated to centigrade has been retracted. and a new value derived from
fahrenheit.

(what centigrade)

;The value 5 in CELL-36 was computed in this way:
; CENTIGRADE « (// (* (- FAHRENHELIT 32) 5) 9)

H FAHRENHELT « 41

OKAY?

4.1.2. Propagation Potentially Poses Problems for Predcfined Pins

Contradictions can arisc not only when cquating two nodes, but also when a constraint device
calculates a value for a pin in conflict with an existing value. As an cxample of this, consider the
network of Figure 3-3 (page 92) for constraining four points to be equally spaced. Assume that one
has been constructed now. Then we perform the cquatings p1 = 0, p3 = 6, and p2 = 4, which
of course are not consistent.

== pl (default 0))

; |Awakening <A12:ADDER-89> because its A got the value 0.
DONE

(== p3 (default 6))

;i |JAwakening <A34:ADDER-97> because its A got the value 6.
; JAwakening <A23:ADDER-93> because its C got the value 6.
DONE

So farso good . . .

(== p2 (default 4))

112 Cuarter Four RETRACTION

[e e o

T+ +

Contradiction! { b 2
_— | o
1 d

Y

[

FIGurE 44 A Contrediction w o Four-Pomt Spacing Network.

; |Awakening <A23:ADDER-93> because its A got the value 4.
;|]<A23:ADDER-93> computed 2 for its part B from pins A, C.
; |Awakening <A12:ADDER-89> because its B got the value 2.

i1: Contradiction in <A12:ADDER-89> among these parts: A=0, B=2, C=4;
N it calculated 2 for A from the others by rule ADDER-RULE-J.
++: These are the premises that seem to be at fault:

CCELL-101 (DEFAULTY: 0> == P,

: <CELL-103 (DEFAULT): 4> == P2,

: CCELL-102 (DEFAULT): 6> == P3.

: Choose one of these to retract and RETURN it.

v

‘This situation is pictured in Figure 4-4, ‘The contradiction was caught when adder a12 computed
a value for p1 which was not consistent with the existing default value, The system has indicated
that the adder computed the value 2. Of course, the value 0 might be the correct one, and one of
the premises for p2 or p3 might be at fault. We should examine the computations of all the pins

involved.

(what (the a al2))

;The valuve 0 in CELL-90 was computed in this way:
; (THE A A12) « 0

OKAY?

Actually, in this case we would have preferred that what show us a global name for the constant;
but it thinks that (the a al2) is the preferred name for the root node becane that is what we

&nchJﬁxmgnﬂﬂskﬂusm1mcmmcﬁwﬂmrmMcn4

(what (the b al2))
;The value 2 in CELL-91 was computed in this way:

14 Don’t you just hite t when an author Jeaves something as an “exercise for the reader™

§4.1.2 Forgiving Systems 113

Retracted

default
P1 P2 P3 P4

H =~ |+

[~ 1= e

FiGuri 45, Defeaing Two Defaults in a Four-Point Spacing Network,

H (THE B A12) « (- P3 P2)

i PIe6
: P2 « 4
OKAY?

Now, this tells us something: (the b a12) is the difference between p3 and p2.

(what (the c ai2))

:The value 4 in CELL-92 was computed in this way:
; (THE C A12) « 4

OKAY?

We could choose to retract any of the premises; Iet us in fact choose p1.

(return pl)
;|Retracting the premise <CELL-101 (DEFAULT): 0>.

: |Awakening <A12:ADDER-89> because its C got the value 4.
DONE

(Much of the tedious trace output has been omitted here; sixteen lines were deleted. Henceforth
most ctrace output will be similarly condensed. and omissions indicated by cllipscs.)

(what p1)

:The value 2 in CELL-85 was computed in this way:
; Pl « (- P2 (- P3 P2))

; P2 « 4

; P + 6

OKAY?

(what p4)

:The value 8 in CELL-88 was computed in this way:
; P4 « (+ P3 (- P3 P2))

114 CHAPTER FOUR REIRACTION

— T

P1 P2 P3 P4
7

\
+ ' 2 + + -
SRS A

FIGURLE4-6. Redundant Premises for o Four-Point Spacing Network.,

. .
- -

H P3 « 6
i P2+~ 4
OKAY?

New values for p1 and p4 have been computed in terms of p2 and p3. (See Figure 4-5.)

Multiple contradictions can arisc in a single interaction, if the network contains redundant
reasons for current values. For example, in a fresh four-point-spacing network, this might occur:

(== p1 (default 1))

:|Awakening <A12:ADDER-69> because its A got the value 1.
DONE 3
(== p3 (default 5))

DONE
(== p2 (default 3))

DONE

P TSR Py

‘The three values for p1. p2. and p3 constitute redundant information for the network. Given
p1 and p2. p3 could have been deduced; given p2 and p3. p1 could have been deduced. E
(However, p2 was not deduced given p1 and p3 because that cannot be done by local propaga- '
tion; algebra is required. Once a correct value for p2 was supplied, however, the system verified
it.)

Fidind
e s

(what p4) i
;:The value 7 in CELL-68 was computed in this way: :
: P4 « (+ P3 (- P3 P2))

: P3 ¢« 5 !
i P23 b
OKAY? ;

§4.12 Forgiving Systems 115

The value 7 was computed for p4 (Figure 4-6). If now p4 is equated to 6, a contradiction must
oceur.

(== p4 (default 6))

+i; Contradiction when merging the cells

: CCELL-68 (P4): 7> and <CELL-84 (DEFAULT): 6>.
i1: These are the premises that seem to be at fault:

: CCELL-82 (DEFAULT): 5> == P3,

; <CELL-83 (DEFAULT): 3> == P2,

: <CELL-84 (DEFAULT): 6>.

1. Choose one of these to retract and RETURN it.

Indeed, as what indicated, the old value of p4 depended on p2 and p3. We choose to retract
p2.

(return p2)

i|Retracting the premise <CELL-83 (DEFAULT): 3>.

:|Removing 3 from CELL-83.

;|Removing 2 from (THE B A23) because (THE A A23)==CELL-83.
;{Removing 7 from (THE C A34) because (THE B A34)==(THE B A23).
:|Awakening <A34:ADDER-77> because its C lost its value.

i |Awakening <A34:ADDER-77> because its C got the value 6.
:{CA34:ADDER-77> computed 1 for its part B from pins A, C.
;|Awakening <A12:ADDER-69> because its B got the value 1.
i | CA12:ADDER-69> computed 2 for its part C from pins A, B,
; |Awakening <A23:ADDER-73> because its A got the value 2.

;+: Contradiction in <A23:ADDER-73> among these parts: A=2, B=1, C=5;

HHH it calculated 4 for A from the others by rule ADDER-RULE-3.

i+: These are the premises that seem to be at fault: f
; CCELL-81 (DEFAULT): 1> == P1,

H <CELL-82 (DEFAULT): 5> == P3,

H CCELL-84 (DEFAULT): 6> == P4,

:;: Choose one of these to retract and RETURN it.

While p2 supported the valuc for p4, the redundant value in p1 also supported it indirectly, and

now the computation has run afoul again. The system is not satisfied until the network is totally .
consistent. We could now change our minds and retract the assignment of 6 to p4, but here we will
proceed to retract p1.

{return ptl)

;|Retracting the premise <CELL-81 (DEFAULT): 1>.

;|Removing 1 from CELL-81.

;i |Removing 1 from (THE B A12) because (THE A A12)==CELL-81.

;|[Removing 2 from (THE C A12) because NIL=z==(THE B A12). ‘

116 CHaprtiRr (FOUR RETRACTION

U S : . e

Pi

FIGURE -7 Suninving Two Contradhicions o Four-Pamt Spacing Network.

. {Awakening <A23:ADDER-73> because its A lost its value.

i JAwakening <A34:ADOER-77> because its B got the value 1.
DONE

‘The ond result is pictured in Figure 4-7.

4.1.3. Frroncous Fquatings Flicit Fxecution Kxceptions Foually Fasily

Until now it has been implicitly assumed that the constraint network, once constructed, is
fixed. Al computations are relative to this fixed structure, and any crrors are attributed to the
chosen premises rather than to the network structure. Premises can be retracted, but not connee-
tions, The retraction mechanism exhibited above operates not by disconnecting a rejected constant
cefi from the rest of the network. but by “denaturing™ the constant. forcibly removing its value but
leaving it connected as a useless appendage (uscless because it has no value and no name).

Here arce introduced two functions dissolve and disconnect for undoing connections.
When given acell, dissolve will undo the connections among aff the cells of the node to which
the given cell belongs. On the other hand, disconnect causes a specified cell o be unhooked
from its node. leaving any others conneceted together, Neither of these is a true inverse for the ==
construction; for example, if one says (== a b) and then (disconnect a). the new situation
will be identical to the original only if a had pot previously been connceeted to any other cells, 1 it
had. then those cells will now all be connected 1o b . [Cis impossible to provide a way Lo provide

a true inverse for == given the current data structayes vsed in the implementation, because not

cnough information is retained (for example, no information whatever is recorded for redundant

cquatings). | ater we will see ways of providing for this.

——

§4.13 Forgiving Systems 117

P1 P2 P3 P4

L
+ + +
i i a

FiGureE 3-8, A Partially Dissolved Four-Point Spacing Network.

To illustrate the use of dissolve and disconnect, consider yet another fresh four-point
spacing nctwork. Initially p4 has no value, and can be expressed in terms of p1, p2, and p3.

(what p4)

;CELL-92 has no value. I can express it in this way:
i P4 = (+ P3 (- P2 P1))

OKAY?

If the connection between the b pins of the three adders is now dissolved, then of course p4 can
no longer be expressed in terms of the difference between p2 and pl.

(dissolve (the b al2))
;|Dissolving (THE B A12), (THE B A23), (THE B A34).

DONE

Sce Figure 4-8.

(what p4)

{CELL-92 has no value. [can express it in this way:
i P4 = (+ P3 (THE B A34))

OKAY?

If now a default valuc is given to (the b a12), it will not affect (the b a23) be-
causc they are no longer connected.

(== (the b a12) (default 3))

:|Awakening <A12:ADDER-93> because its B got the value 3.
DONE

(what (the b a23))

{CELL-99 has no value. I can express it in this way:
(THE B A23) = (- P3 P2)

OKAY?

il

p

[

- T ——— B

118 Cnar1ER FOUR

P ° P2 P3 P4
o4

Figure 39, Computation in a Partially Dissolved Spacing Network,

RETRACTION i

4
Y

e~ =

I.ct us now also cquate (the b a23) to 3. and p1 to 0. This will resuit in the computation
of 3 for p2 and 6 for p3.

(== (the b a23) (default 3))

; |Awakening <(A23:ADDER-97> because its B got the value 3. s
DONE _ o
(== p1 (default 0)) ' B
i [Awakening <A12:ADDER-93> because its A got the value 0.

DONE
The result is shown in Figure 4-9,

(what p3)

;The value 6 in CELL-91 was computed in this way:

; P3 « (+ (+ P1 3) 3)

; P1 « 0

OKAY?

(what p4)

;CELL-92 has no value. I can express it in this way:
; P4 = (+ 6 (THE B A34))

OKAY?

No value was computed for p4 because (the b a34) still has no value. Supposc we were
to connect (the b a34) to p2 (which produces something other than a four-point spacing

network!).

(== (the b ald4) p2)
:|Awakening <A34:ADDER-101> because its B got the value 3,
;| <A34:ADDER-101> computed 9 for its part C from pins A, B.

§4.13 Forgiving Systems 119

P1 P2 P3 P4

Y

FIGURE4-10. A Four-Point Spacing Network Modified by Reconnection.

: |Awakening C(A34:ADDER-101> because its C got the value 9.
DONE

Sce Figure 4-10.

(what p4)

;The value 9 in CELL-92 was computed in this way:
: P4 « (+ (+ P2 3) P2)

; P2 « (+ P1 3)

: P1«0

OKAY?

Now p4 has the value 9 cxpected for equal spacing, but that valuc was computed in a rather
unorthodox fashion! et us undo the connection.

(disconnect (the b a34))

;|Disconnecting (THE B A34) from (THE A A23), (THE C A12), P2.
;|Removing 3 from (THE B A34).

i|Removing 9 from (THE C A34) because of NIL.

:|Awakening <A34:ADDER-101> because its C lost its vailue.

; |Awakening <A34:ADDER-101> because its B lost its value.

DONE

When (the b a34) was disconnected from the p2 node, it was disconnected from the source
of its value. Hence the valuc 3 was removed from it. and thus the value 9 derived from it was also
removed from (the ¢ a34)==p4. The nctwork has now been restored to the situation of Figure
4-9,

(== (the b a34) (the b a23))

T TEue—

2

120 CHAPIER FFOUR REIRACHION

P P2 P3 P4

FIGLREH-1T. A Uscfully Moditicd Four-Paint Spacing Network,

e e e

-

; [Awakening <A34:ADDER-101> because its B got the value 2.
;| CA34:ADDER-101> computed 9 for its part C from pins A, B.
i |[Awakening <A34:A0DER-101> because its C got the value 9.
DONE

Now (the b a34) has been connected to a more legitimate source of 3. This network makes
some sensc: it spaces p2. p3. and p4 cqually, and allows a different spucing to be specified
between pl and p2. Thus the disconnection facility can be used to make useful modifications to

an cxisting nctwork.
Disconnecting (the b al2) will sever the connection with the default value 3. This will

causc retraction of many computed valucs.

(disconnect (the b al2))

;|Disconnecting (THE B A12) from CELL-105.

:|Removing 3 from (TIE B A12).

:|Removing 3 from (THE C A12) because of NIL.

i JRemoving 6 from (THE C A23) because (THE A A23)==(THE C A12).
:|Removing 9 from (THE C A34) because (THE A A34)==(THE C A23).
: |Awakening <A34:ADDER-101> because its C lost its value.

DONE
This situation is shown in Figure 4- 11,

If now (the b al2) and (the b a23) arc connccted, the spacing nctwork will have
been completely restored. and p4 can be computed from p1 = 0 and the given spacing 3.

(== (the b a12) (the b a23))

-

§4.2 Implementation of Retraction Mechanisms 121

P1 P2

A

FIGURE4-12. A Uscfully Moditicd Four-Point Spacing Network.

DONE

(what p4)

iThe value 9 in CELL-92 was computed in this way:
; P4 « (+ (+ (+ P1 3) 3) 3)

; P1 « 0

OKAY?

‘This final happy circumstance appears in Figure 4-12,

4.2. Implementation of Retraction Mechanisms

Ihe primary visible difference in the language, aside from the addition of extra capabilitics
such as dissolve, is the new distinction between deFault and constant valucs. Internally
they arce the same, except that cach cell is tagged as to which type it is, for those routines which care
to check for the distinction.

The changes for constant, default, constantp, and globalp appcar in Table 4-1.
The function formerly called constant has been renamed initialized-cell, and given an
extra parameter reason, which will be the symbol constant or default. ‘The functions of
those names simply call initialized-cell. When the cell is gencrated by gen-cell, the
name given to the cell is not * ? ™ as beforc, but rather the symbol constant or default:
this was originally intended o make the distinction visible when such a cell is printed. but wurned
out to have an imp()r(zlnl application in the retraction process. The predicates constantp and
globalp. which operate by checking the name of the cell, require changes for the new naming

convention. FFinally, recall that the rule component of a node was formerly only used if the supplier

“

122 CHAPTER FOUR RIFTRACTION

(defun constant (value)
| (initiavized-cell value ’constant))

(defun default (value)
(initialized-cell value ‘default))

(defun initialized-cell (value reason)
{let ((cell (gen-cell reason)))
(setf (node-contents cell) value)
(setf (node-boundp cell) t)
(setf (node-supplier cell) cell)
| (setf (node-rule cell) reason)
cell))

(defun constantp (cell)
(require-cell cell)
| (and (null (cell-owner cell)) (memq (cell-name cell) ‘(constant default))))

(defun globalp (cell)
(require-cell cell)
(and (null (cell-owner cell)) (not (memq (cell-name cell) ’‘(constant default)))))

Compare this with Table 3-2 (page 76).

TaBLE4-1. Implementaion of Constant and Default Cells.

for the node was a pin, because if the supplier was a constant then the “rule”™ for the value was sclf-
evident. Now, when the supplicr is a constant or default ccil, which kind is recorded as the
rute. (Fhis information could stilf be derived from the cell name, but it scems cleaner to express it
as the rule.)

‘The handling of contradictions must be changed to allow for retraction. Contradiction han-

dling is now centralized in the function process-contradiction. The function merge-values

is changed to call process-contradiction on discovering a conflict (after printing a
message). Howcver, this is no longer considered to be a fatal error that brings the system to
a grinding halt. It is assumed that process-contradiction may have fixed the problem
(but only maybc!—if the conflicting values depended on redundant premisces, then removing one
premisc may only have caused the retraction and recomputation of the conflicting value from other
premises). Thus, when process-contradiction returns, the merge must be retried.

If a merge discovers a contradiction, then the resolution of that contradiction will require
changing the valucs of the cells involved. Hence it is important in == not to decide which of the
cells is bound until after merge-values has been called. (This is a subtle interaction which 1
missed at first!) Thus == has been rearranged to call merge-values first thing, and save the
result in newval. Also, the decision as to which repository to use (and thus which ccll of the
merged node should become the supplier) has become more complicated: as a heuristic, if one
supplicr is a constant (as determined by looking at the rule), then that is preferred to anything

Y-

§42 Implememation of Retraction Mechanismns 123

(defun == (celll cell2)
(require-~cell celll)
(require-cell celil2)
(cr (eq (cell-repository celll) (cell-repository cell2))
(let ((newval (merge-values celll cell2}))
(let ({(r1 (cell-repository celll))
(r2 (cell-repository cell2))
{(cbt (node-boundp celli))
{cb2 (node-boundp cell2)))
(tet ((r (cond ((eq (rep-rule r1) ‘constant) ri)
((eqg (rep-rule r2) ’‘constant) r2)
((or (not cb2) (and cbl (ancestor celll cell2))) ri)

(t r2)))
(rcells (append (rep-cells r1) (rep-cells r2}))))
| (setf (rep-contents r) newval)

(let ((newcomers (if chl (if cb2 ‘() (rep-cells r2))
(if cb2 (rep-cells rl1) ‘()))))
(setf (rep-cells r) rcells)
(dolist (cell (rep-cells (if (eq r r1) r2 rt)))
(setf (cell-repository cell} r))
(awaken-all newcomers)

‘done}})})})

(defun merge-values (celll cell2)
(require-cell cellt)
{require-cell celi2)
(let ((vall (node-contents celll))
(val2 (node-contents cell2)))
(cond ((not (node-boundp celll)) val2)
((not (node-boundp cell2)) vall)
{(equal vall vaiz) vall)
(t (ctrace "Contradiction when merging ”S and ~S." celll cell2)
(process-contradiction (Tist celil cell2))
(merge-values celll cell2)))))

(defun awaken-all (cells)
{(dolist (cell cells)
(require-cell cell)
{cond ((cell-owner cell)
(ctrace "Awakening ~S because its 7S .
~:[Tost its value™s~;got the value 757]."
(cell-owner cell)
(cell-name cell)
| (node-boundp cell)
(node-contents cell))
(awaken (cell-owner cell))))))

Compare this with Table 3-3 (page 77).

TaBLE -2, Delaying Fquating Decisions Until after the Merge.

clse. ‘This cannot cause circularitics, because nothing is an ancestor of a constant. The rcason for
this heuristic wilt be discussed below.

o

L PR A

124 CHAPTER FOUR RETRACIION

(defmacro setc {(cellname value)
+(process-satc sme+ ‘,cellname ,(symbolconc cellname "-CfLL") ,value srules))

(defun process-setc (emes name cell value rule)
(require-constraint smes)
(require-cell cell)
(let ((sources (get rule ‘trigger-names)))
(cond ((not (node-boundp cell))
(ctrace "7S computed 7S for its part "ST:[72+7; from pin™P T{7S$7+, "}7]."
smes value name sources (length sources) sources)
(setf (node-contents cell) value)
(setf (node-boundp cell) t)
{setf (node-supplier cell) cell)
(setfl (node-rule cell) rule)
(awaken-all (node-cells cell}))
((not (equal (node-contents cell) value})
(let ((triggers (forlist (pinname sources) (sthe pinname smes))))
(clrace "Contradiction in “ST@[among these parts: ~
TiT8ETSTr, LT
“%:{ it calculated S for “S ©
from the others by rule ~S."
smes
(forlist (cell (cons cell triggers))
(require-cell cell)
(tist (cell-name cell) (node-contents cell)))
value
(cell-name cell)
rule)
(process-contradiction (cons cell triggers))
(do {(x triggers (cdr x)))
((null x) (process-setc smes name cell value rule))
(or {node-boundp (car x}) {(return)))})))))

Comparc this with Table 3-8 (page 82).

Tant4-3. Handling Contradictions in setc.

The ctrace message printed by awaken-all is changed because owners may now be
awakened not only because a pin has newly received a valuce, but because a pin has lost a valuc (in

which casc the awakening is a request to recomputc it if possible).

PRI

ik

TR

§42 Implementation of Retraction Mechanisms 125

(defmacro contradiction vars
*(signal-contradiction (1list ,@(forlist (v vars) (symbolconc v "-CELL"))) smes))

{(defun signal-contradiction (cells constraint)
(require-constraint constraint)
(ctrace "Contradiction in “ST@[among these parts: ~:{7S="S™:t, ~)}~])."
constraint
(forlist (cell cells)
(require-cell cell)
(list (cell-name cell) (node-contents cell))))
| (process-contradiction cells))

{defun process-contradiction (cells)
{let ((premises (premisess cells)}))
(et ((losers (do ((p premises (cdr p))
(z ‘() (if (eq (node-rule (car p)) ‘defauit)
(cons (car p) z)
z)))
({null p) (or z premises)))))
(cond ((null losers) (lose "Hard-core contradiction!"))
((null (cdr losers))
(retract (car losers)))
(t (retract (choose-culprit losers)})))))

{(defun choose-culprit (losers)
(format t "7%;;: These are the premises that seem to be at fault:™
T{TRITBXTSTR{ == TST} e ,7}L "
(forlist (p losers)
(cons p (mapcan #/(lambda (c)
(and (globalp c)
(1ist (cell-name c))))
. _(node-ceils p)))))
(format t "~%;;; Choose one of these to retract and RETURN it.")
(let ((culprit (break "Choose Culprit")))
(do ((z losers (cdr z)))
{({nult 2) (choose-culprit losers))
(and (eq (cell-repository (car z)) (cell-repository culprit))
(return (car z))}))))

Compare this with Table 2-11 (page 57).

TaBLE 4-4. Processing and Recovering from Contradictions.

The processing for the setc construct remains the same in the usual case (sce ‘Table 4-3).
When a contradiction is detected. however, because the value computed by a constraint conflicts
with a value alrcady on the pin, then process~-contradiction is called, giving it a list of
the conflicting cclls, When process-contradiction relurns, then there is a question as to
whether to install the value in the pin after all—the processing of the contradiction may have
removed the support for that value. Henee process-setc checks all of the trigger pins for the
rule, and only retrics the setc operation if they all still have values.

bt -

126 CHAPIIR FOUR RETRACTION

(There arc scrious problems remaining, however, ‘The assumption here is that no new values
will be asserted within process-contradiction, but only old ones retracted. This requires
the assumption that the user will not assert new equatings within the breakpoint provided by
signal-contradiction, but only usc probing functions like what. If the user were to not
simply retract a value from a trigger pin but were also to provide a new value, then the test in
process-setc would be incorrect: a value would be supported. but not the one in hand! A
better thing to do would be to restart the rule which invoked setc: this involves a non-local
escape. This issue will be addressed in the next chapter.)

The contradiction construct is implemented in the same way as before (Table 4-4).
I'he function signal-contradiction does not signal a fatal crror, however, but simply
prints a message and then calls process-contradiction.’ This function takes a list of
conflicing cells, Al of the places in the system which detect contradictions (merge-values,
process-setc.and contradiction)handle them by calling process-contradiction.

A set of “losers™ (constant ¢ells deemed o be collectively at fault for the contradiction) is
computed. The function premisess computes the sct of joint premises for the list of cells. ‘Then
those premises which are default cells are extracted. If there arc any default cells, then those
are considered to be the losers; otherwise all the premises (which must then all be constant
cells) are taken as the losers. I there are no losers at all (this shouldn’t ever happen?), it is fatal.
I there is just one loser, it is automatically retracted. Otherwise, choose-culprit is called to
decide which one to retract.

(Suppose there arc two losers, and onc is a default node specified explicitly in a == re-
qucst which the user just typed, causing the contradiction. Should the system in this case automati-
cally retract the value just specified (thus making the network resistant to obvious inconsistent
changes)? This would make it hard to vary parameters. Or should the system automatically retract
the other loser, allowing the onc just explicitly specified to hold? Consider the two cases where the
cell to which the default was explicitly equated already had a value or did not. Iixercise for the
rcader: determine what is “the right thing”.)

In principle, choose-culprit could be an automatic routine using various heuristics to
decide which loser to retract. This version defers the problem to the auser (not necessarily the best
thing to do). It prints the list of losers (for cach one printing also any global names connected to it),
and then calls break to cnter a 1isp breakpoint. The retura function causcs the specified value
to be returned from the call o break, so this is bound to the variable culprit . This returned
value is then tested to ensure that it is a valid culprit; if it is not, then the question is repeated.
The user need not return an actual loser cell. but may return any cell of that node, This is for
convenience, so that the user may refer to a value by an equivalent global name,

5. As with setc. there is an assumption that within process-contradict ion there will be only retiactions, not
any ncwly computed values. Therclore it is not necessary 1o retry the conlradiction lest.

—————————

P

i

§4.2 Implementation of Retraction Mechanisms 127

(defun retract (cell)
(ctrace "Retracting the premise “S." cell)
(awaken-all (forget cell)))

(defun forget (cell &optional (source () sourcep) (via () viap))
(require-cell cell)
(and sourcep (require-cell source))
(and viap (require-cell via))
(ctrace "Removing =S from ~S™:[3¢™; because ~:[of ~;"S=="]17$7]."
(node-contents cell)
(cell-goodname cell)
sourcep
(and viap (not (eq via source)))
{(and viap (not {eq via source)) (cell-goodname via))
(and sourcep (cell-goodname source)))
(setf (node-boundp cell) ())
(setf (mode-contents cell) ())
(setf (node-supplier cell) ())
(setf (node-rule cell) ())
(let ((fcells (append (rep-cells (cell-rapository cell)) ‘(})))
(dolist (c (rep-cells (celli-repository cell)))
(and (cell-owner c¢)
(dolist (value (con-values (cell-owner c)))
(require-cel) value)
(and (node-bouundp value)
{(eq value (node-supplier value))
(memq (cell-name c)
(get (node-rule value) ‘trigger-names))
(setq fcells (nconc (forget value cell c) fcells))))))
fcells))

TanLE4-S. Retracting Vilues from the Network,

(defun premises (cell)
(require-cell cell)
(cond ((not (node-boundp cell)) ‘())
(t (let ((s (node-supplier cell)))
(if (null (cell-owner s))
(1ist s)
(premisess (forlist (name (get (node-rule s) 'trigger-names))
(sthe name (cell-owner s))}))))))

(defun premisess (cells)
(do ((c cells (cdr c))
(p '() (unionq (premises (car c)) p)))
((nudd c) p)))

Compare this with Table 3-10 (page 84).

TAB E4-6. A Rewriting of the premises Function.

The function retract in Table 4-5 takes care of removing the value from a cell and awaken-
ing the relevant constraints to request recomputation. The recursive function forget takesa cell

128 CUAPTER FOUR Reiracnos ;

whose vatue should be removed and returns a list of cells whose owners should be awakened. (The
optional arguments source and via are used only internally to produce better ctrace output,
so that the chain of recursive forgetting is more casily followed.)

Once the ctrace output has been produced in forget, the value is removed from the |
repository and the boundp. supplicr, and rule components reset. Then the variable fcells is }
used to accumulate a set of cells whose owners should be awakened. “This is nitially all the cells !
of the current node. Tn addition, if any ccll of the current node has an owner, and any of the pins f
of that owner was computed by a rule using that coll us o wigger. then those pins must also be ‘
forgotten, and the set of cells returned by the recursive call to forget v added to the current
fcells sct. Finally the complete feells distis returned. (The nconc function can be used |

e e

instead of the sct-union operation uniong because we know that any node can he forgetten a ’ i
most once: if such o node is encountered again by another path, its cells will not he returned by ':]
forget . A fse trick: the call to append in the initiahization of fcells copics the list of cells
so that nconc may be used later and not destroy the list used by the repository.) ;

In summary, forget removes the value from the given node and all nodes whose values

recursively depend on it All the cells of all the nodes which lost valuces are returncd. The owners
' of these cells must be awakened: this process is known as “hegging”. because a node that forgets its
vatue must beg connected devices to re-supply (and re-support) the value. This is necessary because
i the device might, after all. have provided a value as a subsidiary supplicr, only to have the value
| discarded because it agreed with the value provided by the main supplier.
‘The function premises», which is simply a part of premises which formerly was not
a separate function, is given in Table 4-6, ‘I'his illustrates a common sitation in dealing with
recursive data structures: onge part of the recursion involves mapping over a list of sub-structures.
Writing twe mutually recursive functions allows two entry points, one taking a single structure,
one taking a list of them. A similar transformation for fast-premises (which the reader will
recall does the same thing as premises, but with a better worst case, by using graph-marking
technigties) appears in ‘Table 4-7.

Counterintuitively, iCis actually casicr to dissolve i node than to disconnect a single cell from
a node. One might think that dissolution involves more work, and indeed it may; but disconncecting
requires more special cases, because one cell is treated ditferently from the rest, and so requires 7

more code.

-~

When a node is dissolved (see the code for dissotve in Table 4-8). cach cell miust become
a node unto itself, and so cach must have its own repository. To avoid some work and to avoid
wasting a repository, the existing repository is Ieft attached to the supplicr for the original node. If 1
the node has no value, then an artificial supplicr is chosen arbitrarify by using the cell received as

an argument. For every cell other than the supplier, a repository is created and hooked up to the

cell. 1f the cell is a constant (in which case the node must have a value, and that value must be the

§4.2 Tmiplementation of Retraction Mechanisms 129

[(defun fast-premises (cell)

(require-cell cell)
(proyl (fast-premises-mark cell) (fast-premises-umnark cell)))

(defun fast-premisess (cells)
(prog! (fast-premises-marke cellc) (fast-premises-unmarks cells)))

(defun fast-premises-mark (cell)
(require-cell cell)
(and (node-boundp cell)
(let ((s (node-supplier cell)))
{cond ((markp s) ())

T

s

(t (mark-node s)
(if (nult (cell-owner s}) !
(Vist s) .
(fast -premises-marks !
(forlist (name (get (node-rule s) ‘trigger-names))

(s*the name (cell-owner s)))))))))) ;

(defun fast-premises-marks (cells)
(do ((c cells (cdr c))
{(p '() (nconc (fast-premises-mark (car c)) p)))

((nuld c) p)))

(defun fast-premises-unmark (cell)
(reguire-cell cell)
{let ((s (node-supplier cell))) b
(cond ((markp s)
(unmark-node s)
(or (null (cell-owner s))
(fast-premises-unmark
(forlistL (trigger-name (get (node-rule s) ‘trigger-names))
(=the trigger-name (cell-owner s)))))))))

(defun fast-premisaes-unmarks (cells)
(dotist (cell cells) (fast-premises-unmark cell)))

Comparc this with Table 3-11 (page 85).

Tam -7, A Rewrning of the fast-premises Function. J

constant’s value, cven though the constant is nat the supnlier—the assumiption is that the network
is consistent). then the new repository should bear the value. The constant cell becomes its own
supplier, and the name of the cell (constant or defaul) is used as the rule name. (This is the
situation alluded to carlier where the cell name is used other wan for printing.) 1f the cell is not a
constant, then it hecomes a valucless node, as it has become disconnected from its supplicr (if any). :

Once cach cell has gotten its own repository, then the original repository remains with the
supplier cell alone; its cells component is updated to reflect this fact.]
Finally, if the node had had a value, then disconnecting some cells has the effect of retraction

of a value, and so the forget function must be applied. Exery cell which is not bound and has an
owner is given o forget to recursively remove values which depended on the connection; once

130 CuaPTER FOUR RETRACTION

(defun dissolve (cell)
(require-cell cell)
(tet ((supplier (if (node-boundp cell) (node-supplier cell) cell))
(cells (node-cells cell})) .
(ctrace "Dissolving ~{7S7t, 7}." (forlist (c cells) (cell-goodname c)))
(dolist (« cells)
(or (2q < supplier)
{let ({r (make-repository)))
(cond ((and (node-boundp supplier) (constantp c))
(setf (rep-contents r) (node-contents supplier))
(setf {(rep-boundp r) t)
(setf (rep-supplier r) c)
(setf (rep-rule r) (cell-name c))))
(setf (cell-repository c) r)
(push ¢ (rep-cells r)})})
(setf (node-cells supplier) (list supplier))
{and {node-boundp supplier)
(let ((queue '())})
(doltist (c cells)
(cond ((and (not (node-boundp c)) (cell-owner c))
(setf (node-contents c) (node-contents supplier)) ‘kl:.dge
(setq queue (nconc (forget c) queue)))))
(awaken-all queue))))
‘done)

TastE4-8. Dissolving & Node—Carefully!.

this has been done, all the appropriate awakenings are performed. (The line marked “kludge” puts
the old value back into the repository solely so that forget can print its trace message correctly
before removing the value again.)

Obscrve that dissolve works correctly in the limiting case of a single-cell node. ‘The first
loop docs nothing; the sctting of the node-cells changes nothing: and the second loop only exccutes
when the supplier has a value, but its body only works for cells with no value. Hence the node
remains cffectively unchanged.

Disconnecting a cell requires some special cases (Table 4-9). The disconnected cell must ac-
quire a new repository, while the old onc remains with all the other cells of the node. “The cell
is deleted from the cells list of the old repository, and hooked up to the new onc. ‘The contents,
boundp. supplicr, and rule components are copicd from the old repository to the new one. ‘There

follow scveral cascs.

(a) If the node had had a value and was the supplicr for the node, then there is great upheaval,
First there is a scarch for other cells of the node which might immediately become a new
supplicr for the node; such cells must be constants. However, constant cells arc preferred
to default cclls, and so there are two identical oops, one looking for constant cells, and
the other for default cells if the first onc fails. In either case, the found cell is installed as the
new supplier. If no such new supplicr can be found, then a third loop applies forget to all

PO

a,

§43 Summary of the Retraction Mechanisms 131

(defun disconnect (cell)
(require-cell cell)
{let ((oldr (cell-repository cell))
(newr {make-repository)))
(setf (rep-cells oldr) (delq cel) (rep-cells oldr)))
{(ctrace "Disconnecting S from ~{"S7t, ~}."
(cell-goodname cell)
(Forlist {(c (rep-cells oldr)) (cell-goodname c)))
(setf (cell-repository cell) newr)
{push cell (rep-cells newr))
(setf (rep-contents newr) (rep-contents oldr))
(setf (rep-boundp newr) (rep-boundp oldr))
(setf (rep-supptier newr) (rep-supplier oldr))
(setf (rep-rule newr) (rep-rule oldr))
(cond ((and (rep-boundp oldr) (eq cell (rep-supplier oldr}))
(do ({c (rep-cells oldr) (cdr c)))
((null ¢)
{do ((cc (rep-cells oldr) (cdr cc)))
((null cc)
(do ((ccc (rep-cells oldr) (cdr ccc))
(z () (nconc (forget (car ccc)) 2}))
{((null ccc) (awaken-all z))))
(cond ((and (constantp (car cc))
(eq (cell-name (car cc)) ’'default))
(ctrace "7S becomes the new supplier for the node.”
(cell-id (car cc)))
(setf (rep-supplier oldr) (car cc))
(return)))))
(cond ((and (constantp (car c))
(eq (cell-name (car c)) ‘constant))
(ctrace "~S becomes the new supplier for the node.”
(cell-id (car c)))
(setf (rep-supplier oldr) (car c))
(return))}))
((constantp cell)
(setf (rep-supplier newr) cell)
(setf (rep-rule newr) (cell-name cell)))
(t (awaken-all (forget cell)})))
'done)

TABLE4-9. Disconnecting a Cell from a Node.

of the cclls of the node, and then gives the collective nodes to awaken-al1 in an attempt to
recompute a value.

(b) I[f the cell had been a constant but not the supplicr for the node, then its vatue must have been
the same as that of the node. It retains its value, but becomes its own supplicr again, and the
rule is copied from the cell name (constant or default), justas for dissolve in Table

4-3,
(c) Otherwisc the cell has been disconnected from its supplicr, and its value must be forgotten,
‘The usual forget-awaken-all scquence is applicd to it.

——— o ———— e

P

132 CUAPIER FOUR RETRACTION

4.3. Summary of the Retraction Mechanisms

The retraction capability exhibits the first traces of an automatic deduction facility. When a
contradiction is observed, the systom automatically traces the problem to its origin, and then makes
a decision (sometimes automatically, but otten by asking the user) 4s to how to solve the problem,
Once the decision is made, the system will remove one premise from the network and “anti-
propagate” the value—that is, propagate the removal by removing values which were computed

from it, and then try o find wavs o recompute removed values. Thus the system tries in whatever

way itcan o compute vatues for as many nodes as possible,

The distinction introduced between constant and default cells allows the user o ex-
press a level of confidence in the value. FFor example. constants used within a program that are part
of the intended algorithmic structure can be expressed as constant cells, while input data can be
expressed as default cells. The distinction is used to decide what premises o retract in case of
contradiction. As a sccondary benelit, the distinetion can also be used to choose heuristically the
“best” supplier for a node, In the general case one might want to have many types of constant cells,
with some partial order among the types to determine which ones are losers: even more generally,
a user procedure could be aflowed to step in and choose among the premises: but this gets very
complicated.

The ability to disconnect portions of the computation network also s a kind of retraction
capability. When a computation goes awry, the fault may be with the input data, but it may also be
that the program was misconstructed. However, we have not yet provided for automatic retraction
of network connections! Such a facility might be useful, however—certainly the network is suspect
if a contradiction cannot be traced to any premise! If constant cells are considered to be part of
the algorithmic structure expressed by the network, then perhaps suspicion of network connections
should be on a par with suspicion of constant values.

The default mechanism is not quite like that in [Doyle 19785] and [McAllester 1978); it
gives preference o the value for retraction, but makes no attempt to re-assert the value if the

situation causing the contradiction is altered. This ability is treated in the next chapter.

Once you were o,
Dear burthday friend,
In spute of purple weather.

Bur now yvou are three
nd near the end
45 we grewsome together.

Chapter Five

How fourthful thou,
Fonvoth for you.,

For soon you will be ‘nuore!
Bur— fore .
One can he three be two; ASSUantIOnS

Before be five before!

—Wialt Kelly (1951)

TIII-’ DEFAUT EVALUEMECHANISM presented in Chapter FFour allows ane to say, “in the ab-
sence of any ather information, assume that a certain value is thus-and-so—but feel free
to ignore the value if necessary.”™ In our constraint language. however, where computations can
be undone and redene, it is usetul to draw a distinction between a default value which, once
retracted, does not re-appear, and one which has a certain persistence. We will call the latter kind
an assumplion,

There arc applications for constraints where it is vital that 4 node always have some value. For
example, if a node represents the x-position of some graphical object being displayed on a screen,
then if the object is to appear it must have some x-position. An assumption might be that the x-
position is zero unless otherwise constrained.

Another use of assumptions is in case analysis. I it is known (or assumed!) that a node must
take on one of a specific set of values, then one element of that set can be arbitrarily assumed to be
the value of the node; another can always be chosen if this leads to a contradiction. Such assump-
tions lead to conclusions which are permissible. rather than required. I, however, one gocs a step
further and arranges to assume all of the values. one by one. then any conclusions which come out
the same for all the choices must be the case independent of the choice, leading to the deduction
that such conclusions are required mdependent of the choice of value for the node, (Here we shall
not make use of this extra step. but will make use of its contrapositise form: if every assumption of
aset leads w a contradiction. then the choice from the setis notitself at fault for the contradiction,
but rather the scts of other prenmuises for the respecitive contradictions, tuken coliectively, "This will

lead to the resolution principle.)

133

v_____.‘ - g -_.

134 CUHAPTER FIVE ASSUMPTIONS

5.1. Definition of Assumption Constructs

We will introduce two new constructs to the language: assume and oneof. Each onc will
represent a cell in the same manner that the constant and default constructs do. However,
assume and oneof cclls will have an associated mechanism for persistently giving the celt a
value.

Morc precisely, (assume n) should generate a cell which has the value # provided that
the cell can take on that value consistently with the rest of the network. I having the value »
would conflict with constant or default values in the network, then the value s gracefully
withdrawn. ! it would conflict with other assumptions, then one assumption is chosen arbitrarily
and withdrawn.

Similarly, (oneof /ist) takes a 1ISP list of values and generates a cell which takes on one of
the values in list. If taking on one value leads to a contradiction, it is withdrawn as for assume and
a new valuc is tried. For example, (oneof (0 1 2)) generates a cell that tries to take on one
of the values 0, 1, or 2, It might appear that

(== x (oneof (0 3 5 6 9)))

is cxactly the same as (and therefore simply shorthand for)

(assume 0))
(assume 3))
(assume 5))
(assume 6))
(assume 9))

e e R e
"
"

»x X > »x x

but this is not so. The latter says that x tries to take on onc of the values 0, 3, 5, 6, or 9, other
things being cqual. If, however, some external constraint on x requires x to be 4, then all these
assumptions quictly bow out. On the other hand, oneof imposcs the constraint that x must take
on some onc¢ of these values. If some external constraint on x requires x to be 4 when the oneof
construct has been used as above, then a contradiction occurs.

1. Ht is thus arbitrarily assumed that assumptions arc less important than defaulls er constants One might want to
have somcthing like a default which was less important than an assumption. Indeed. the question of persisience for
a cell and the question of which is chosen for retraction in case of conflict arc orthogonal.

§5.2.1 Implementation Problems 135

FAHRENHEIT CENTIGRADE
32

OTHERMULT MULT

FIGURE 5-1. A Temperature Conversion Network with an Assumption,

FAHRENHEIT CENTIGRADE

g L
+
B
ADD
‘-4o>
32

OTHERMULT MULT

<)

w

FIGURE 5-2. A Temperature Conversion Network, after Retracting an Assumption.

5.2. Implementation Problems

There are some difficultics with implementing these constructs. ‘The primary problem is that
they cannot operate using purcly local information. This will be sulved by recording extra informa-
tion about the structure of the network so that assumption cells will have the information they need
immecdiatcly to hand.

5.2.1. Nogood Sets Can B¢ Used to Locally Record Contradictions

Consider first thc assume mcchanism. Suppose, in a temperature conversion network, that
centigrade is assumced to be zero:

— Ll s anan

P

136 CHAPTER IVE ASSUMITIONS
(== centigrade (assume 0))

‘i'his causes the computation (on the basis of this assumption) of the value 32 for fahrenheit
(sce Figure 5-1: the assumption is indicated by a hexagonal shape). Suppose then that
fahrenheit is cquated to the default value —40. This of course causes immediate detection of a
contradiction. The contradiction mechanism, tracing the premises of the contradictory values. finds
that the premises are three constant cells, a default cell, and an assume cell. ‘Thie last is
chosen as the culprit and retracted. At this instant, just after the retraction of the assumption and
the forgetting of the consequences, the situation is as shown in Figure 5-2. Once values have heen
forgotten, then every the owner (ifany) of every retracted cell is awakened. to request it o compute
avalue if it can,

Here, then, is the problem. If the assumption cell is awakened in the “obvious™ way, it will
gladly supply a value for its cell. (It cannot tell at this point that this value is contradictory, Al it
can telf locally is that its cell has no value, and it has been asked to supply a value.) Fram this value
new deductions may proceed. Indeed, before you know it the value 32 might be re-deduced for
fahrenheit! This would trigger a new contradiction, and the result is that the system might oscil-
late, forever thrashing., Even if deductions from fahrenheit made any headway (say through
the first multiplication device). deductions from (he assumption might continue o beat against
them at intermediate points.

One approach to solving this problem would be to assign prioritics o propagation possibilities:
values not depending on assumptions should be propagated in preference to values not depending
on assumptions. OF course, this in cffect implies carrying around information with cach value
describing its origin, "This amounts to carrying around extra non-local information about distant
parts of the network, Morcover, so far it has not been necessary to place any restrictions on the
order in which propagation step are carried out by the system; indeed, we wish to preserve as much
as possible the property that propagations may be performed in paraliel.

If we are committed to recording some kind of non-local information, we might as well do it
right. in a straightforward way. We will introduce the mechanism of nogoed sets [Staliman 1977]. A
nogood sct records a set of premises which have been found to be inconsistent. When a contradic-
tion occurs at least one of whose premises is an assumption, then a list of the premises is made up.
‘This fist is recorded in each premise’s node. When an assumption cell considers trying to assert an
asstimed value for its node, it can first check all of the nogood sels associated with that node, If the
assumed valuc would cventually cause the reeccurrence of a contradiction which has alrcady been
noted once and recorded in the form of a nogood set, then the assumption cell can avoid asserting
the value.

Nogood sets record value information about the network, information gained at some com-
putational cost, concerning scts of incompatible values. They serve as a cache, so that blind aileys

need not be re-explored over and over again. Instead. assumption cells can perhaps determine

.-

§5.22 Implementation Problems 137

locally and immediately that its valuc will eventually cause a contradiction in the current situation.
Nogoud scts therefore provide a semi-predicate for the safety of the assumed value: the absence of
a relevant nogood sct does not guarantee that trying a value will succeed, but the presence of one
can immediately guarantee that it must fail,

The formation of nogood sets of course constitutes a kind of algebra on the network. Each
sCl summarizes some computation tree in terms of a set of values for its leaves known to be incom-
patible. Indeed, we might want to think of a nogood set as anuther kind of constraint: a redundant
constraint that a certain set of nodes may not all simultancously take on certain associated values,
and that assumption cells know about specially. For efficiency (?). however, we will not actually
implement them as constraint devices. (Another reason is that the language docs not have scts as
data objects.)

5.2.2. Resolution Can Derive New Nogood Sets from Old Ones

We turn now to the oneof construct. Suppose that the node to which a oneof cell is
connected has no value, and the oneof cell is asked to supply a value. It can examine its sct of
possibilitics, possibly filter out some of them by consulting the nogood sets recorded in the node,
and then arbitrarily choose onc of the remainder to assume.

Further supposc, however, that the recorded nogood sets rule out 4/l of the possible choices;
that is, for cach choice there is a nogood set which rules out that choice. What then can be done?
[.et us refer to the nogood set that rules out a choice as a “killer” of that choice. Now a nogood
sct is a mapping of nodces to particular valucs, and asserts that not all the nodes may take on the
associated values, because that has been previously determined to be a contradictory state. For
a nogood set to be a killer for a choice for a node, it must be the case that every other node in
the killer must currently bear its associated value. By an abusc of terminology let us call all these
other nodes the premises of the killer (they arc the grounds for assuming that the choice cannot
hold). Since the oneof construction indicates that it is a contradiction not 1 be able to choose
any of the values, then all the premiscs of all the killers must be collectively responsible for this
contradiction. 1t follows that these collective premises themsclves constitute a nogood set, which
can be duly recorded. The result is that from several nogood sets sharing a common node, cach
forbidding one value for that node, a new nogood set can be derived not containing that node.

As an example, consider the network of Figure 5-3. 'The node named confusion has
attached 1o it three little sub-networks and a oneof choice. One network states that whatever
confusion is,

confusion -+ confusion = confusion X confusion

must hold. ‘This is a quadratic equation with roots 0 and 2; however, this subnetwork cannot

compute a value for confusion by local propagation. ‘The second subnetwork states that

138 CuaprTER FIve ASSUMPTIONS

CONFUSION . LOOSE

e

 {0,1.2} >

Figury. §-3. A oneof Cell fur which No Alternative Works.

A

Contradiction!

CONFUSION

0 i
OA V

s Lo

N’

A

FIGURE 5-4. Assuming Zcro Docs Not Work.

confusion is the maximum of 1 and something clsc. The third says that confusion cannot be
2. Neither of these can compute a value for confusion by local propagation, cither.

‘The oneof cell (indicated by a hexagonal shape with a sct inside it) will assume some value
of its sct. Supposc that it assumces 0 is the value, ‘Then a contradiction will occur in the maxer
device, for 0 cannot be the maximum of 1 and anything clse (FFigure 5-4). ‘The set of premises
causing this contradiction is the assumption 0 and the constant 1. ‘Thus a nogood set is created:

{(assumption-cell, 0), (constant-1, 1)}

(Here we notate a nogood sct as a mathematical set of ordered pairs (cell, value).) ‘The assuined
valuc 0 is retracted, and all consequent deductions forgotten. This leaves us back where we started,

except for the newly created nogood set.

e d

§5.2.2 Implementation Problems 139

2 < CONFUSION
<+
1 . .
— Ll
2 1 A
N B ~
1D L=
Contradiction! -
> FIGURE 5-5. Assuming One Does Not Work.
2
4 + < CONFUSION 2 LOOSE
< A -
2 o
B 1 »
0
4 2 2A y Contradiction!
S
ooy L2 =
2
FIGURE 5-6. Assuming Two Ducs Not Work, |

The oneof cell, true to its nature, would still like to assume some value. Consulting the
available nogood sets, it discovers that 0 is currently forbidden. Suppose that it chooses 1. ‘Then
a contradiction will occur somewhere in the little quadratic cquation, for 1 is not a root of the
equation (Figure 5-5). 'The set of premiscs causing this contradiction is the assumption 1 (the
quadratic cquation contains no constants!). Thus another nogood set is created:

{(assumption-celi, 1)}

In other words, | simply can never work in the current network, cven if constants or defaults are
retracted. ‘The assumed valuc 1 is retracted, and all consequent deductions torgotten. This leaves us
once more back where we started, except for another nogood set.

The oneof ccll sl trics to assume some value, 'The existing nogood sets now rule out both
0 and 1. and so 2 is chosen. This causes a contradiction in the cquality device (Figure 5-6). (It
also happens to compute the value 2 for the variable Toose, which hangs loose froin the maxer
device.) The set of premises causing this contradiction is the assumption 2, the constant 2, and the

P

140 CHAPTER FIvE ASSUMPTIONS
4 <, CONFUSION
+[
2 . -
- » 1
4 2 24 {r
Gz)y Ly 21—
2
FIGUrE $-7. Causing a Contradiction and Retraction Fyventaally Works,

default vatue 0. Thus another nogood sct is created:
{(assumption-cell, 2), (constant-2, 2), (default-0, 0)}

The assumed value 2 is retracted, and all consequent deductions forgotten. This leaves us yet again
back where we started, except for yet another nogood set.

Once again the oneof ccll tries to assume a value. Now it discovers that every possibility
is ruled out. The constant 1 prevents the choice of 8 the chaice of 1is flatly forbidden: and the
constant 2 and the default 0 rule out the choice of 2. Since one of the three choices must hold,
this constitutes a contradiction. ‘The three nogood sets are imerged, climinating the assumption-cell

entrics, to form a fourth nogood set:
{(constant-1, 1}, (constant-2, 2), (default-0, 0)}

"This constitutes a resolution step on the nogood sets. Now the contradiction mechanism of Chapter
Four goes to work, and finding that there is exactly one default cell involved. automatically
retracts that value,

One last time the oneof cell contemplates its situation, There are three nogoad scts to con-
sider. ‘The value 0 is still ruled out, because the constant cell { still has its value. The value 1
is still ruled out. ‘The vajue 2, however, is nor now ruled out, because one cell of that nogoud set
(the default cell) now has no vatue. Hence the oneof cell is again free to choose 2 for its value.
This eventually propagates throughout the network, and computes the value 1 for the default

cell which was formerly 0 ([<igure 5-7).

el cm

o 2

§5.3 Dplementation of Asswmprion Mechanisms 141

5.3. Implementation of Assumption Mechanisms

To implanent the assumption imechanisms we need a way to represent the “persistence”™ of an
assumed value, and also a data structure for representing nogood sets. We will treat an assumption
as a funny kind of constraint, one which (sometimes) computes a value without requiring any
inputs. ‘T'he constraint needs to know what value (for assume) or values (for oneof) to choose
from. To this end a new component info is added to evers constraint, Not every constraint will use
it (indeed most will not); it is a catch-all component for sticking extra things into. "This component
will find yet other uses in later chapters.

A nogood set will be represented as a header plus a sorted fist of pairs, cach pair being a cons
of i repository (used to uniqucly represent a node) and a value tan integer). Fach repository will
bear an identification (an i/ component similar to that for cells and constraings), and the pairs of a
nogoad set are sorted by alphabetical ordering on this repasitory identification. (The only reason
for the id component in cach repository is for sorting purposes, and the only reason for sorting is so
that certain lincar algorithms can be used on nogood sets.) The header will be siniply the symbol
nogood. This is present purely so that a nogood set can be altered by side-effect: if every place
that knows about the nogood set points unly to the header, then alterations of the nogood set will
he visible o all. Thus a nogood set might look like this:

(NOGOOD (<REP-12> . §) (KREP-15> . -3) (<REP-23> . 6))

Thisis a nogood sct with three pairs.

Every repository mentioned in a nogood set needs to know about that nogood set. Hlence
another new component, negoads. is added to cach repository. This could be simply a list of all
nogood sets mentioning that repository, but to speed up scarching it will be divided into “buckets™
according to the value associated with that repository in the nogood. 'Thus. for a given repository,all
the nogoods associating value 0 with that repository will be in bucket 0: for the value 1, bucket 1;
for the value —43, the bucket —43, cte. Thus, to check whether a certain value n is assumable
for a repository, only nogood sets in bucket n need be checked. FFor fastest access to a bucket, the
buckets could be kept in «t hash array. We will not be that complicated here; instead, the nogoods
component will simply be an a-list, associating buckets with values. However, the a-list pairs will
be kept sorted by values, again for speed. In all, a repository’s nogoods component might fook like
this:

((-3 (NOGOOD (<REP-12> . 5) (KREP-15> . -3) (<REP-23> . 6))
(NOGOOD (<REP-15> . -3) (<REP-43> . -20)))
(0 (NOGOOD (<REP-11> . -4) (<REP-15> . 0)))
(7 (NOGOOD (<REP-14> . 2) (KREP-15> . 7) (CREP-23> . -7) (CREP-43> . 27))
(NOGOOD (<CREP-15> . 7) (<REP-24> . 0) (<REP-43> . 0))

(NOGOOD (CREP-6> . 3) (KREP-14> . -7) (CREP-15> . 7) (CREP-43> . 27)))
(9 (NOGOOD (<REP-15> . 9))))

rl—-——-'—"—-—v————m~v-

142 CHAPTER FIVE ASSUMPTIONS !

I(deftype constraint (con-id con-name con-ctype con-values con-info) ‘
(formal stream "<7@{7S:7]7S>" (con-name constraint) (con-id coastraint))) b

(deftype repository ((rep-contents ()) (rep-boundp ()) (rep-cells ())
{rep-supplier ()) (rep-rule (}) (rep-mark ())]
rep-id (rep-nogoods ‘()))]

(format stream "<Repository™:[T«™;: 7S7]7@[for “(7S7t,"/]7D>"
{rep-boundp repository)
(rep-contents repository) L
(cell-ids repository)))

(defmacro node-conteats (cell) «(rep-contents (cell-repository ,cell)))
(defmacro node-boundp (cell) ¢(rep-boundp (cell-repository ,cell)))
(defmacro node-cells (cell) +(rep-cells (cclli-repository ,cell)))
{defmacro node-supplier (cell) +(rep-supplier (cell-repository ,cell)))
(defmacro node-ruile (cell) -(rep-rule (cell-repository ,cell)))
(defmacro node-mark (cell) *(rep-mark (cell-repository ,cell)))
|(defmacro node-nogoods (cell) <(rep-nogoods (cell-repository ,cell)))

! (defun gen-repository ()

l (let ((r (makae-repository))
{(n (gen-name ‘rep)))

(setf (rep-id r) n)

(set n)

r))

(defun node-lessp (x y)

{require-cell x)

(require-cell y)

(alphalessp (rep-id (cell-repository x)) (rep-id (cell-repository y))))
Compare this with Table 3-1 (page 75) and Table 2-3 (page 49).

TABLE S-1. Data Structure Modifications for Assumptions.

This nogoods component has four buckets, which are sorted according to the values —3, 0, 7,
and 9. These buckets have 2, 1, 3, and 1 nogood scts, respectively. This is evidently the nogoods
component of repository number 15. The buckets are not sorted (they could be sorted by a lexi-
cographic order, but this did not scem to be worthwhile for the present purposcs). Each entry of

i cach bucket (i.c.. cach nogood sct) is sorted by repository id. |
Table 5-1 shows the nccessary changes to the constraint and repository data struc-
tures. As usual, a macro node-nogoods is defined to access the nogoods given a repre- ’

sentative cell of a node. T'he function gen-repository gencrates a repusitory and associates
a unique ISP variable name with it, also in the usual manner. Everyplace that used to
call make-repository (these places aic in gen-cell, disconnect, and dissolve) arc
changed to call gen-repository. (The new definition of gen-ce11l is not shown here, as that
is the only change to that function.) The predicate node-1essp orders two nodes according to
the alphabetical order of the id's of their respective repositorics,

§53 Implementation of Assumption Mechanisms 143

(defprim assumption (pin))

(progn ‘compile
(defun assumption-rule (smes)
(let ((=rules ’‘assumption-rule)
(pin-cell (the pin smee)))
(or (node-boundp pin-cell)
(let ((value (con-info smas})))
(do-named outer-loop
((x (cdr (assoc value (node-nogoods pin-cell))) (cdr x)))
((null x) (setc pin value))
(do-named inner-loop
{({c (cdar x} (cdr c)))
((null ¢) (return-from outer-loop))
(and (not (eq (caar c) (cell-repository pin-cell}))
(or (not (rep-boundp (caar c)))
(nol (equal (rep-contents (caar c)) (cdar c))))
(return-from inner-loop))))))))
{push ’assumption-rule (clype-rules assumption))
(defprop assumption-rule () trigger-names)
(defprop assumption-rule (pin) output-names)
{defprop assumption-rule assumption tentative)
‘(assumption rule))

(defun assume (value)
(let ((a (gen-constraint assumption ())))
(setf (con-name a) (con-id a))
(setf (con-info a) value) -
(awaken a) :
(the pin a)))

TABLE S-2. hmplementation of the assume Construct..

‘The implementation of the assume construct is shown in Table 5-2. A special kind of primi-
tive constraint called an assumpt ion is first dcfined. It has a single pin called pin, and no rules
of the usual kind. The function assumption-rule implements a special rule for assumptions,
which unlike other rules has no triggers. ‘The function’s argument is called +«me =, and the first thing
it does is to bind the variables »rule* and pin-cell; this is in accordance with convention so
that the setc construct can be used within the rule (sce Table 4-3 (page 124)).

If the pin is not bound, then the assumption rule considers asserting an assumed value. The
relevant value is stored in the info component of the constraint (which is passed in as *me=). The
assurnption rule performs a set of two nested loops. ‘The outer loop fetches the bucket associated
with the value from the node’s nogoods component, then iterates over the contents of the bucket
(cach clement is a nogood set). 1f cach nogood set passes a test (that it not currently forbid the
value), then the pin is set to the value, using setc.

The inner loop implements the nogood test. All the repositories in the nogoud set are checked.
If any repository other than the one for the pin-cell is cither unbound or had a different valuc from
the one associated with it in the nogood set. then that nogood set does not forbid the value; hence

i

.

)

144 CUAPTER FIVE ASSUMPLIONS . ,

e RTINS

(defprim oneof (pin))

(progn ‘compile
(push ‘oneof-rule {ctype-rules oneof))
(defprop oneof-rule () trigger-names)
(defprop oneof-rule (pin) output-names)
(defprcp oneof-rule oneof tentative)
‘{oneof rule})

(defun oneof (valuelist)

(let ((a (yen-constraint oneof (})})))
(sell (con-name a) (con-id a)})
{sell (con-info a) valuelist)
{awaken a)

(the pin a)))

e e e e L

B

Fame -3 dmplementauon of the oneof Construct..

the inner loop may be exited, and the next nogood set tested. I the inner foop checks all the pairs
of a nogood sct without exiting, however, then the nogood set must forbid the value, and so the
auter loop is exited. In other words, if p is the repository for the pin of the assumption, and b is the
bucket of nogoads for the value. then the value is forbidden if

Imeb(Vr,v) En{r#p A repboundp(r) A rep-contentsy{r) == v))

The function assume generales an assumption constraint. It makes the name of the con-
straint be the same as its id, installs the assumed value in the info ficld, and then—very impor-
tant!—awakens the constraint. (Since the rule has no triggers. it is a/ways triggerable. If the
assumption is not awitkened now, it probably never will be, so it better be done now.) This will
causc the assumed value 1o be asserted in the pin. Finally, the pin is returned.

The push construct adds the rule o the set of rules for contraint-type assumption. The
first two defprop forms define the set of triggers (empty) and outputs (the pin). The third
defprop form defines the rule to be tentative; that is, a value computed using that rule is very
“weak”, and subject to automatic retraction.” Also. nogoud sets should always be recorded for
tentative values. This property will be used in process-contradiction.

The implementation of oneof (Vable S-3) is similar to that for assume. There is a kind of
constraint called a oneof. and the info component of the constraint holds the list of possibilitics.

Ihere is a function oneo £ which is analogous to the function assume—indeed, they are almost

identical,

} Compare this with Brown's “weak rules”™. [Brown 1980]

§53 Implementaron of Asswnption Mecianisms 145 |

(defun oneof-rule (smes)
(tet ((srules ’oneof-rule)

{pin-cell (the pin smes)))

{(let ({values (con-info smes))) ! !

(cond ((node-boundp pin-cell) !

(or (member (node-contents pin-cell) values)

B

(contradiction pin)))
(t (do-naimed loop -over possibilities
((v values (cdr v))
(kilters "())) X
((null v)
(ctrace "A)) of the values °S for °S are no good * 3
values -
(cell goodname pin-cell)) E
(let ((lcsars ()
(dolist (kabler kilters) i
fdolast (x {cdv kabler)) .

(or (v¢q (car x) (cel) repository pin cell))
(let ((cell (1f (rep-boundp (car x})
(rep-supplier (car x})
(car (rep-cells q
(car x)))))) :7? :
(or (memg cell losers)
(push cell losers))})))
(process-contradiction losers))
(oneof-rule smes))
(do-named outer-loop
((x (cdr (assoc (car v) (node-nogoods pin-cell))) i
(cdr x)))]
({nrull x) ;
(setc pin (car v))
(return-from loop-over-possibilities))
{do-named inner-loop
((c (cdar x) (cdr c)))
((null ¢)
(push (car x) killers)
(return-from outer-loop))
{(and (not (eq (caar c) (cell-repository pin-cell)))
(or (not (rep-houndp (caar c)))
(not (equal (rep-contenls (caar ¢)) (cdar c))))
(return-from inner-loop)})})))))))

Tanii 5-4. The Rule for oneof.

The difference between assume and oneof is cxpressed in the function oneof-rule
(Table 5-4). If the pin has a valuc, then it must be in the permitted set of values, or else a contradic-
tion is signalled. 1 the pin has no vatuc, then a more complicated scarch is performed. There is a
third loop nested outside the other two, which loops over the possible choices. FFor each choice the
samg test used by assumption-rule is performed, trving to find a nogood set that will forbid
the value. 1F none is found. then the vadue is installed in the pin, and the loop over the possibilitics
is exited, as a valid choice has been found. 1, however, for a given possibility a nogood setis found
which does forbid that choice, then there is no hope for that value. ‘The nogood setis a kitler for the

value, and is remembered by pushing it onto the list killers.

P

146 CoarreR FIve ASSUMPTIONS
(defun process-contradiction (cells)
(let ({premises (premisess cells}))
(do ((x premises (cdr x)))
((nultl x}
(let ((losers (do ((p premises (cdr p)) ‘
(2 () (if (eq (node-rule (car p)) ‘default) o
(cons (car p) z) |
2))) i
((null p) (or z premises))))) i
(cond ({(null losers) (lose "Hard-core contradiction!")) f
{((pull (cdr losers)) i
(retract (car losers)))
(t (retract (choose-culprit losers))})))
(cond ((get (node-rule (car x)) ‘tentative)
(ctrace "Deeming “S in 7S (computed by rule ~S) to be the culprit.”
(node-contents (car x))
(cell-id (car x))
(node-rule (car x)))
(forin-nogood-set premises)
(retract (car x))
(return))))))
Comparce this with Table 4-4 (page 125).
TABLE 5-5. Looking for Tentative Vadues for Use as Culprits.
| If any valid choice is found, then it is installed as described above. If no valid choice is found, '
? then a killer nogood set has been found for cach choice. In this case oneof-rule announces (via
; ctrace) that all the possibilitics have been ruled out. It then takes the union of all the repositorics
| in all the killers, other than the repository for the pin itsetf, accumulating them in the list 1osers
(actualty, for cach repository a representative cell is found: if the repository has a value, then its
supplicr is used, and otherwisc onz is chosen arbitrarily).
The list Tosers is cventually a sct of cells in contradiction produced by resolution of the set
of killers. ‘T'hese cells are given to process-contradiction. When contradiction processing
has ended. oneof-rule rc-invokes itself to try choosing again.
When a contradiction occurs, the central handler process-contradiction iscalled. This
function is changed (Vable 5-5) to have three priority levels for culprits: just as default values
are preferred to constant values, so values computed by a tentative rule are preferred to either.
‘Thus there is an extra scarch loop, which first checks all the premises for a tentative value. If any is ¢ |

found. it is imnediately deemed to be the culprit. and a nogood sct is constructed and recorded for
this contradiction. The culprit is then retracted in the usual manner.

1 ‘The latter case should of course never occur, but coding it this way allows for gencral non-monotenic rules later
which are triggered by the fack of a value in the xame way that assumption-rule and oneof-rule are. In this
case the “unbound valuc” might usefully appear in a nogonod sct.

§5.3 , Implementation of Assumption Mechanismns 147

(defun form-nogood-set (cells)
(setq cells (sort {(append cells '()) #'node-lessp))
(ctrace "The set™: {7<™%; | "8X7:16; 7"S="S">%:t,~/17<7%;|~8X™:15; is no good.™>"
(forlist (c cells) (Vist (celli-goodname c) (mode-contents c))))
(let ((nogood (cons ‘nogood
{(forlist (c cells)
(cons {cell-repository c) (node-contents c))))))
(dolist (cell cells)
(let ((slot (assoc (node-contents cell) (node-nogoods cell))))
(cond (slot (or (member nogood (cdr slot)) (push nogood {cdr slot))))
{(or (null (node-nogoods cell))
(< (node-contents cell) (caar (node-nogoods cell))))
{push (Vist {node-contents cell) nogood) (node-nogoods cell)))
(t (do ((ng (node-nogoods cell) (cdr ng)))
{((or (null (cdr ng))
(< (node-contents cell) (caar (cdr ng))))
(setf (cdr ng)
(cons (list (node-contents cell) nogood)

(cdr ng)))))ind)

TanLES-6. Constructing and Recording a Nogood Set.

It is essential that a nogood set be recorded if a tentative rule is involved, because the rule will
depend on the existence of that set not to keep making the same poor choice over and over. 1t is
not necessary to record a nogood set if only constant and default values are involved. It might be
uscful, of course; the ordinary propagation mechanism could check nogood sets in order to detect
contradictions carlicr, This might be particularly useful if the user is trying onc defwilt value after
another while twiddling some parameter: the == mechanism (in merge-values, perhaps) could
check nogood scts before attaching a new value in order to detect a bad valuc quickly. There is a
trade-off between the space and time needed to record a nogood sct and the time needed to check
them, and the overhcad of repeatedly rediscovering the same contradictory situation if premiscs are
being varicd rapidly. However, it is unclear whether this is worth it; it is a good subject for future
statistical rescarch.

The function form-nogood-set (Table 5-6) takes a list of nodes (i.c.. representative cells),
and constructs and records a nogood sct for their current vatues. First the nodes are sorted accord-
ing to the node-1essp predicate, to ensure that the nogood sct will be properly sorted. (The call
to append is intended to copy the list of nodes, because the sort primitive is destructive.) After
a trace message is printed, the nogood a-list is constructed. Then for every node, the new nogood
set is installed in that node. This involves using assoc to get the relevant bucket. If the necessary
bucket exists, the nogood sct is added o the bucket. Otherwise a new bucket must be created and
inserted in the correct place to keep the list of buckets properly sorted. This involves some tedious
special cases.

The trouble with adding an interesting new feature is always that it intcracts with cverything
else. Nogood scts are no exception. What should happen to the nogood scts when two nodes are

148 Cuarrer Five ASSUMPTIONS

(defun == (celll cell2)
(require-cell celll)
{require-cell celi2)
(or {(eq (cell-repository celll) (cell-repository cell2))

(let ((newval (merge-values celll cell2)))
(let ({r1 (cell-repository celll))
(r2 (cell-repository cell2))
(cbl (node-boundp celll))
(cb2 (node-boundp cell2)))
(let {({r (cond ((eq (rep-rule rl) ‘constant) ri1)
((eq (rep-rule r2) ’‘constani) r2)
({or (not cb2) (and cbl (ancestor celll celi2))) ri1)
(t r2)))
(rcells (append (rep-cells r1) (rep-cells r2))))
(setf (rep-contents r) newval)
(let {(newcomers (il cbl (if cb2 7() (rep-cells r2))
(if cb2 (rep-cells r1) ’())))

| (xr (if (eq r r1) r2 r1)))

(setf (rep-cells r) rcells)

(dolist (cell (rep-cells xr})} (setf (cell-repository cell} r))

(let ((fcells (alter-nogoods-rep xr r)))

(setf (rep-nogoods r)
(merge-nogood-sets (rep-nogoods r) (rep-nogouds xr)))

{(awaken-all fcells))

(awaken-all newcomers)

‘done})))))

Comeare this with Table 4-2 (page 123).

Tanig5-7. Merging Nogood Scts When Fguating Cells,

cquated? According to our principle of order-independence, everything ought be be just as if the
cquating had happened first, followed by creation of the nogood sets. This is not simple.

The necessary changes to == are shown in Fable 5-7. A variable xr has been introduced
to stand for the repository which will be thrown away; thus r and xr arc r1 and r2 or vice
versa. Now if a vilue was no good for xr before, then it will certainly be no good for r, because
they are to be the same. Hence all the nogoods for xr must be carried over to r. ‘the function
alter-nogoods-rep causcs all the nogoods in xr to he modified to apply to r. Then the two
coliections of nogoods must be merged; in the process any duplicates are eliminated for searching
efficiency later. (After all, there may have been two nogood sets that were identical except that one
mentioned r and one mentioned xr.)

‘The function alter-nogoods-rep rcturns a list of cells whose owners should be awakencd
after everything clse has been done. ‘These cells arc awakened by == after the nogood collections

have been merged.

The function alter-nogoods-rep (Tuble 5-8) must handle Tots of special cases. It itcrates
over the nogoods component of xr. I<or cach bucket it iterates over the nogood sets in that bucket.
IFor cach nogood sct it uses assq to find the pair mentioning xr (which must be present—if it is

A

L

§53 Implementation of Assumption Mechanisms 149

(defun alter-nogoods-rep (xr r)
(let {{(fcells 7()))
(dolist (bucket (rep-nogoods xr))
(dolist (nogood (cdr bucket))
(let ((z (assq r {(cdr nogood)})
{xz (assq xr (cdr noyood))))

(cond ((null xz)
(lose “Funny nogood set S for bucket 7S of repository ~S."

xr (car bucket) nogood))
{{null 2)
(setf (cdr nogood)
{add-nogood-pair r {(cdr xz) (delassq xr (cdr nogood)})}))
((equal (cdr 2) (cdr xz))
(setf (cdr nogood) (delassq xr (cdr nogood))}))
(t {dolist (pair (cdr nogood))
(selyq fcells (append (rep-cells (car pair)) fcells))
(1et ((buck (assoc (cdr pair) (rep-nogoods (car pair)))))
(or buck (lose "Nonexistent bucket: ~S." pair))
(setf (cdr buck) (delq nogood (cdr buck)))
{or (cdr buck)
{(setf (rep-noyoods (car pair))
(delrassq ’() (rep-nogoods (car pair))))))))))))

fcells))

(defun add-nogood-pair (rep val nogoodlist)
(require-repository rep)
(cond ((null nogoodlist) (list (cons rep val}))
((node-lessp (car (rep-cells rep)) (car (rep-cells (caar nogoodlist})))
(cons (cons rep val) nogoodlist))
(t (cons (car nogoodiist) (add-nogood-pair rep val (cdr nogoodlist))))))

TapLk 5-8. Altering Nogood Scts for o New Repository

not, an internat error has been detected), and possibly a pair mentioning r. If a pair mentioning ¢
is not found, then the pair mentioning xr is deleted from the nogood set. and a pair mentioning ¢
with the same value is added (it must be added in the correct place to keep the nogood set sorted).
Now if there is a pair mentioning ¢, then there arce two cases, depending on whether or not the
mentions of r and xr associate the same value with cach. If the values are the same, then the
mention of xr should be deleted: the nogood relationship still holds, because once r and xr are
merged, then r holding the value is the same as xr holding the value. If the valucs are different,
then the nogoaod relationship can never hold (one of the two cases cannot hold), and so the entire
nogood sct might as well be climinated: the nogood set must be deleted from every bucket which
contains it. Fvery such bucket can of course be tound from the repository-value pairs of the nogood
set. As an extra but unnccessary space-saving twist, if deleting a nogood set from a bucket makes
the bucket empty, then the bucket is removed from the list of buckets for that bucket's repository.
If a nogood set is climinated, then all owners of cells in all the nodes whose repositorics are
mentioned in the nogood set must be awakened. This is because the nogood set might be the reason
that some assume ccll is not currently asserting its assumed value. Such assume cclls must be

4

7

150 CHAPIER FIVE ASSUMPTIONS

!(defun merge-nogood-sets (sl s2)

.+ {cond ((null si) s;)

((null s2) si1)

((< (caar sl) (caar s2)))
(cons (car sl) (merge-nogood-sets (cdr s1) s2)))

((> (caar s1) (caar s2))
(cons (car s2) {merge-nogood-sets st (cdr s2))))

(t (cons (cons (caar sl) (merge-nogood-buckets (cdar s1) (cdar s2)))

(merge-nogood-sets (cdr sl1) (cdr s2))))))

(defun merge-nogood-buckets (bl b2)
(cond ((null bl) b2)
((member (car bl) b2) (merge-nogood-buckets (cdr bl) b2))
(t (cons (car bl) (merge-nogood-buckets (cdr bl) b2)))))

TaBLE5-9. Merzing Two Collections of Nogood Scts.

awakened when the nogond set disappears. of them, because the network might be in a bad state
until the caller has done some other clean-up first (this is the case in ==).

The function add-nogood-pair simply inserts a new pair into a nogood list in the correct
position for keeping it sorted.

The function merge-nogood-sets takes two lists of buckets of nogood scts, and merges
them into a single collection. 'The merging of the top-level list takes lincar times, because the
buckets are in sorted order. However, the entries in a bucket are not sorted. and so merging two
buckets with the same valuc can take quadratic time. On the other hand. cach bucket entry (a
nogood sct) is kept sorted. and so is in a canonical form which can be compared by the 1ISP equal
function (which is used by such primitives as member and assoc)—equal treats two objects of
user-defined type (by de ftype)as being equal iff they are eq.

When a value for a node is forgotten. then any nogood scts mentioning that value for that
node might have formerly been suppressing an assumption and might now not so suppress an
assumption. In the forget function (Table 5-10), the old valuc must be remembered internally
hefore it is destroyed. and then used to feteh the relevant bucket of nogood scts. Any celis of
nogoods in that bucket arc added to fcel1s (the list of cells to be returned for later awakening),
provided that they are not connected to the cell being forgotten and that they currently have no
value. (A finer filter would first test the nogood sct to see whether it actually could be suppressing a
vilue: if too many nodes of the nogood sct were unbound, or had values not matching the nogood's
associated values, then the nogood would not be suppressing a value. On the other hand, it cannot
hurt to awaken devices unncecessarily, except for the wasted eftort invoived. (On the third hand, to
fail to awaken a device may be a disaster! [[]Sussman 1975]) ‘The effort to filter the cells queued
into fcells here should be weighed against the cffort of unnccessary re-awakening here. This is

purely an efficiency issuc that will depend on details of a particular iimplementation.)

§53 Implementation of Assumption Mechanisms 151

(defun Torget {(cell &optional (source () sourcep) (via () viap))
(require-cell cell)
(and sourcep (require-cell source))
(and viap (require-cell via)) .
(ctrace "Removing ~S From “S™:[T3+~; because “:[of ~;7S=="]7§7}."
(node-contents cell)
(cell-goodname cell)
sourcep
{and viap (not (eq via source)))
(and viap (not (eq via source)) (cell-goodname via))
(and sourcep (cell-goodname source)))
| (let ({oldvalue (node-contents cell)))
(setf (node-boundp cell) (})
(setf (node-contents cell) ())
(self (node-supptier cell) ())
(setf {node-rule cell) ())
(let ((fcells (append (rep-cells (cell-repository cell)) ‘())))
(dolist (c (rep-cells (cell-repository cell)))
(and (cell-owner c)
(dolist (value (con-values (cell-owner c)))
(require-cell value)
(and (node-boundp value)
(eq value (node-supplier value))
{memg (cell-name c)
(get (node-rule value) ‘trigger-names))
(setq fcells (nconc (forget value cell c) fcells))))))
(dotlist (nogood (cdr (assoc oldvalue {(node-nogoods cell))))
(dolist (pair (cdr nogood))
(and (not (eq (car pair) (cell-repository cell)))
(not (rep-boundp (car pair)))
(setq fcells (append (rep-cells (car pair)) fcells)))))
fcells)))

Compare this with Table 4-5 (page 127).

TaBIE 5-10. Forgotten Values May Re-enable Suppressed Assumptions.

If dealing with nogood sets is difficult when cquating two nodes, it is nearly impossible when
dissolving them. Dissolving nodes (or disconnecting single cclls) disrupts network conncctions
which had previously existed. Nogood scts implicitly contain information which is dependent on
network structure, in a form which abstracts out the structure used to derive them—their very
utility lics in this abstraction. When a nodc is dissolved, it may be very difficult to determine which
nogood scts are still valid. The code here takes the casy way out—when a node is dissolved, all
nodes reachable from the given node are visited, and their nogeod collections destroyed. “This is
guaranteed to be safe; nogood sets merely redundantly encache information about the network.
This information can be re-derived (at some cost, of course) for the new topology.

It would be possible to record in cach node every nogood set that depended on the connec-
tions in that node; a modified premises function could gather together the nodes gone through,
and form-nogood-set could usc that list make the necessary records. However, this involves

is

152 CuAPTER FIVE ASSUMPIIONS

pr— G A U et v e s e e i e g

(defun dissolve (cell)
{require cell cell)
| (let ((fcells (fast-expunge-nogoods cell)))

| . {Yet ((r (gen-repository)))

(awaken-all queue))))
(awaken-all fcells))
'done)

(defun disconnect (cell)
(require-cell cell)
(let ((fcells (fast-expunge-nogoods cell}})
{let ((oldr (cell-repository cell))
{newr (gen-repositary)))

(t (awaken-all {forget cell)})))
(awaken-all fcells))
‘done)

Compare with Table 4-8 (page 130) and table 4-9 (page 131).

Tanri -1 Disconnections Wreak Havoe with Nogood Sets.

L E S

some space and time overhead. If it is assumed that network structure changes slowly compared o
changes of value, all that complexity may not be worthwhile.

The changes to the dissolve and disconnect functions are shown in Table 5-11. Each
calls fast-expunge-nogoods before doing anything clse, and cach uses gen-repository
instead of 'make—reposito ry. After all the other work is done, then awaken-all is applicd
to the list of cells returned by fast-expunge-nogoods. Otherwise the code is the same as in
Table 4-8 (page 130) and Table 4-9 (page 131), and so the bulk of the code is clided in Table §-t1.

Table 5-12 contains the code for fast-expunge-nogoods. {tis a graph-marking algorithm
that simply cvery node reachable from the given one, and destroys the nogood information
in cach nodc visited. ‘The value of fast-expunge-nogoods-mark (which is returned by
fast-expunge-nogoods) is a list of all the cells of all nodes visited which had any nogoods
information. (1This could be refined to return only cells with owners, or only cells owned by
assumptions.) 1t marks nodes as they are visited, and as usual a post-pass resets the mark bits.

As with alter-nogoods-rep (Tablc 5-3). the cells are returned because the nogood infor-
mation being destroyed might have formerly prevented some assume cell from asserting its value.
Once the nogoud information has been climinated (and any changes to the network have been
madc by the caller of fast-expunge-nogoods), then such assume cells must he awakened,
so that they may have another chance to assert their values,

There are a few trivial changes (o various routines from the last chapter. The scarch for
premises in the functions premises and fast-premises must treat assumplions as premiscs.
Because premises and fast-premises perform the same work but the fatter is faster in the

L e

F——

aala

§5.3 Implementation of Assumption Mechanisms 153

- —- e
(defun fast-expunge-nogoods (call)
(regquire-cell cell)
(progl (fast-expunge-nogoods-mark cell) (fast-expunge-nogoods-unmark cell)))
(defun fast-expunge-nogoods-mark (cell)
(require-cell cell)
(cond ((not (markp cell))
(mark-node cell)
{tet ((fcells (and (not (null {node-nogoods cetl)))
(append (node-cells cell) 7()))))
(setf (node-nogoods cell) ‘())
(dolist (c (node-cells cell))
(and (cell-owner c)
(dolist (v (con-values (cell-owner c)))
(setq fcells
(nconc (fast-expunge-nogoods-mark v) fcells)))))
fcells))
(t (NN
(defun fast-expunge-nogoods-unmark (ceil)
(require-cell cell)
(cond {(markp cell)
(unmark-node cell)
(dolist (¢ (node-cells cell))
(and (cell-owner c)
(dolist (v (con-values (cell-owner c)))
(fast-expunge-nogoods-unmark v)))))))
TABLEES-12. Rapid Destruction of Potentially Invalid Nogood Information.)
(defun fast-premises-mark (cell)
(require-cell cell)
(and (node-boundp cell)
(let ((s (node-supplier cell)))
(cond ((markp s) “())
(t (mark-node s)
| (if (or (nulY (cell-owner s)) {get (node-rule s) ’tentative))
(list s)
(fast-premises-marks
(forlist (name (get (node-rule s) ’trigger-names))
(«the name (cell-owner s)}))))))))
Compare this with Table 4-7 (page 129).
TABLES-13. Assumptions Are Considered 10 be Premises.,

worst case, from now on we will show the code only for fast-premises. the changes for which
(occurringin fast-premises-mark)are shown in ‘Fable 5-13.

It would be nice if what knew how to print an assume or oneof ccll in the same way it
is typed. To this end a new convention is introduced whereby the occurrence of “!™ in a treeform
designates not a pin but instead the info component of a constraint. Thus the new treeform
definitions in ‘Table §-14 specify how to print assume and oneof cells as desired.

bt

AR

o e e a bW

o b i

154 CHAPTER FIVE ASSUMPTIONS

(defprop adder ((c (+ a b)) (b (- c a}) (a (- c b))) treeforms)

(defprop multiplier ((c (= a b)) (b (// c a)) (a (// c b))) treeforms)
(defprop maxer ((c (max a b)) (b (arcmax ¢ a)) (a (arcmax c b))) treeforms)
(defprop minner ((c (min a b)) (b (arcmin ¢ a)) (a (arcmin ¢ b))) treeforms)
(defprop equality ((p (= a b)) (b (arc= p a)) (a (arc= p b))) treeforms)
(defprop gate ((p (0-if-unequal a b)) (b (-> p a)) (a (-> p b))) treeforms)
(defprop assumption ((pin (assumption !}))) treeforms)

(defprop oneof ((pin (oneof !))) treeforms)

Compare this with Table 3-15 (page 96).

TABLE S-14, New trgﬂgrms Definitions.

(defun tree-form-chase (cell shallow top)
(require-cell cell)
{let ((s (node-supplier cell))) :
(cond ((and shallow (node-boundp cell)) (node-contents cell})
((and (not top) (not (singlenummarkp s)))

{{(cell-owner s)
(cond ((and (eq s cell) (not top)) (cell-goodname s))
(t (let ({(treeform
{(cadr (assq {(cell-name s)
(get (ctype-name
(con-ctype (cell-owner s)))
‘treeforms)))))
(cons (car treeform)
(forlist (n (cdr treeform))
| (cond ((eq n ’!) (com-infa (cell-owner s)})
((and (node-boundp s)
(not (memq n (get (node-rule s)

‘trigger-names)))) 1
7)
(t (tree-form-chase (sthe n (cell-owner s))]
shallow .
ONNNN) 3
((globalp s) (cell-name s)) o
(t (node-contents s))))) |
Compare this with Table 3-17 (page 100). I

TABLE 5-16. Constructing a Treeform with a |,

To make this work a few odd patches arc nceded. (large systems scldom spring forth
full-grown as from the forchcad of Athena; they evolve by small changes.) ‘Ihe change to b
tree-form-trace in Table 5-15 has nothing to do with the """ convention, but rather ar-
ranges for assumption cells to be “cuts” in the same way constant cells are. Onc change to
tree-form-deep-trace causcs “!" not to be treated as a pin name; the other, and also the g
change to tree-form-deep , allows a trecform not to exist for some constraints, in which case
that constraint is passcd by and another tricd. ‘This will be uscful later for avoiding the use of |
certain uninteresting constraint-types in explanations. 'l 3

§53 Implementation of Assumption Mechanisms 155

(defun tree-form-trace (cell shallow)
(require-cell cell)
(cond ((node-boundp cell)
(let ((s (node-supplier cell)))
(cond ((cell-owner s)
| (and (get (node-rule s) ’tentative) (nummark cell)) icrock
(or shallow
(tree-form-trace-set (cell-owner s)
(get (node-rule s) ’‘trigger-names)
shallow)))
(t (nummark cell))))) ;crock
(t (let ((cells (node-cells cell)))
(setf (node-supplier cell)
(or (if shallow
(or (tree-form-shallow cell cells)
(tree-form-deep cell cells shallow))
(or (tree-form-deep cell cells shallow)
(tree-form-shallow cell cells)))
(if (cell-owner cell)
(tree-form-deep-trace cell shallow)

cell)))))})

(defun tree-form-deep (cell cells shallow)
(do ((z cells (cdr z)))
{(nuil z) ())
(and (not (eq (car z) cell))
(cell-owner (car z))
(let ((q (tree-form-deep-trace (car z) shallow)))
(and q (return q))))))

(defun tree-form-deep-trace (cell shallow)
(let ((treeform
{(cadr (assq {(celli-name cell)
(get (ctype-name (con-ctype (cell-owner cell)))
'treeforms)))))

| (cond (treeform
(tree-form-trace-set (cell-owner cell)
l (remq ’'! (cdr treeform))
shallow)
cell))))

Compare this with Table 3-16 (page 98).

TABLES-15. Tracing Missing Treeforms and Treeforms with 1,

Finally, tree-form-chase must fill in the info component when it sces a “!™ in the
trceform; this is shown in Table 5-16 (part of the codc has been omitted: it is the same as in ‘Table
3-17 (page 100)).

The code in Table 5-17 has nothing whatsocver to do with asstmptions; it just patches a
bug described in §4.2, where a solution had been promised. The patch is that process-setc,
before signalling a contradiction, remembers the values which triggered the rule which invoked
process-setc. The setc is retricd only if all the triggers still have those values.

156 Cuaprtir FIve ASSUMPIIONS

(defun process-setc (smes name cell value rule)

rule)
(let ((values (forlist (tr triggers) (node-contents tr))))
(process-contradiction (cons cell triggers))
(do ((x triggers (cdr x))
(v values (cdr v)))
((null x) (process-setc smos name cell value rule))
(or (and (node-boundp (car x))
(equal {node-contents (car x)) (car v)))

(return)})))N)))

‘Ihis code patches a problem in the code in Table 4-3 (page 124).

TastE5-17. A More Reliable Version of process-setc.]

The solution was delayed until this chapter, rather than being given in Chapter Four, because
now we arc in a position to poke a hole in this solution. With the advent of such strange rules as
assumption-rule, which in cfiect trigger on the absence of a valuc rather than the presence of
ong, it is not clear that this patch is adequate. 1t will work for presently defined rules, but may not

be general cnough for other types of rules.

Ja

§54 Examples of the Use of Assumptions 157

5.4. Examples of the Use of Assumptions

To illustrate the uses of assumptions, two examples arc given here. One illustrates the special
cases necded to awaken assume cells: the other uses oneof cells and some additional constraints &
to solve the four queens problem.

5.4.1. Simple Assumptions Are Persistent

To exhibit the behavior of simple assumptions, we will ring the changes on a simple maxer i
device. In the following cxample, all ctrace output concerning the awakening of devices has
been suppressed without trace {pun intended). All other trace output is shown here.

{create u maxer)
<U:MAXER-61>

If the a is assumed to be 1 and the b is assumed 10 be 2, then from these assumed values the
maximum 2 can be computed. »3

! (== (the a u) (assume 1})
: | CASSUMPTION-68:ASSUMPTION-68> computed 1 for its part PIN,

DONE 1
== (the b u) (assume 2)) 1
i | CASSUMPTION-71:ASSUMPTION-71> computed 2 for its part PIN.
;|<U:MAXER-61> computed 2 for its part C from pins A, B. 1
DONE

Interrogation indicates that indced the ¢ was computed in this way. !

(what (the c u))

:The value 2 in CELL-67 was computed in this way:

;' (THE C U) « (MAX (ASSUMPTION 1) (ASSUMPTION 2))
OKAY?

Now we shall insist (by a default statcment) that the ¢ really ought to be 3. .

(== (the ¢ u) (default 3))

;|Contradiction when merging <CELL-67 (C of U): 2> and <CELL-75 (DEFAULT): 3>.
:{Deeming 2 in CELL-73 (computed by rule ASSUMPTION-RULE) to ba the culprit.
;|The set (THE PIN ASSUMPTION-68)=1, (THE PIN ASSUMPTION-71)=2,

il CELL-75=3 is no good.

;{Retracting the premise <CELL-73 (PIN of ASSUMPTION-71): 2>.

;|Removing 2 from (THE PIN ASSUMPTION-71).

:|Removing 2 from (THE C U) because (THE B U)==(THE PIN ASSUMPTION-71). ’

—

158

CHAPTER FIVE ASSUMP IIONS

i | CU:MAXER-61> computed 3 for its part B from pins A, C.
DONE

This of course caused a contradiction between the default value 3 and the computed value 2.
Because the latter was computed from assumptions, one of the assumptions was arbitrarily chosen

to be the culprit and retracted. *

(what (the c u))
;The value 3 in CELL-67 was computed in this way:

H (THE C U) ¢ 3
OKAY?

Indeed the value 2 has disappceared, and been replaced by the specified default valuc.

(what (the a u))
:The value 1 in CELL-63 was computed in this way:

: (THE A U) ¢ (ASSUMPTION 1)
OKAY?

The assumption for a is still in force.

(what (the b u))
:The value 3 in CELL-65 was computed in this way:

;' (THE B U) + (ARCMAX 3 (ASSUMPTION 1))
OKAY?

On the other hand, the assumiption for b has been retracted, and b was computed from the default

valuc 3 and the asswinption 1.

Now, to make things more complicated, let us insist that a be 5.

(== (the a u) (default 5))
i1Contradiction when merging <CELL-63 (A of U): 1> and <(CELL-77 (DEFAULT): 6>,

:|Deeming 1 in CELL-70 (computed by rule ASSUMPTION-RULE) to be the culprit.
:|The set (THE PIN ASSUMPTION-68)=1, CELL-77=5 is no good.

i |Retracting the premise <CELL-70 (PIN of ASSUMPTION-68): 1>.

;|Remaving 1 from {(THE PIN ASSUMPTION-68).

The default value 5 conflicted with the assumed value 1, and the latter was therefore retracted. A

nogood set was formed in the precess.

:JRemoving 3 from (THE B U) because (THE A U)==(THE PIN ASSUMPTION-68).
: JCASSUMPTION-71:ASSUMPTION-71> computed 2 for its part PIN.
: [CU:MAXER-61> computed 3 for its part A from pins B, C.

4

Note that if scveral assumpuions are involved. the system currently chooses one arbitranily. It might be uscful 10

have a “hook™ to allow a uscr function to discnininate among assumplions.

p—— -

§54.1 Examples of the Use of Assumptions 159

‘the value 3 for b had been computed from the assumption 1. and so must be retracted also. Once
this is done, the old assumption for b is free to re-assert the value 2. From this assuinption and

the

value 3 on c, the value 3 = arcmax; 2 can be computed for a. ‘This of course contradicts the

default value 5 just placed there.

;]Contradiction when merging <CELL-63 (A of U): 3> and <CELL-77 (DEFAULT): 5>.

: |Deeming 2 in CELL-73 (computed by rule ASSUMPTION-RULE) to be the culprit.
:|The set (THE PIN ASSUMPTION-71)=2, CELL-75=3, CELL-77=5 is no good.
;|Retracting the premise <CELL-73 (PIN of ASSUMPTION-71): 2>.

; {Removing 2 from (THE PIN ASSUMPTION-71).

: [Removing 3 from (THE A U) because (THE B U)==(THE PIN ASSUMPTION-71).

‘The contradiction rested on the assumption of 2 for b, and so it was deemed the culprit and

retracted again, along with its consequences.

‘There remains @ more fundamental contradiction, however: the default value 5 for a is

incompatible with the default value 3 for c.

:}Contradiction in <U:MAXER-61> among these parts: A=5, C=3.
These are the premises that seem to be at fault:
<CELL-77 (DEFAULT): 5>,
<CELL-75 (DEFAULT): 3>.
Choose one of these to retract and RETURN it.

.
LR

We choosc to retract the value 3 from c.

(return cell-75)
:|Retracting the premise <CELL-75 (DEFAULT): 3>.

: (Removing 3 from CELL-75.
: | CASSUMPTION-71:ASSUMPTION-71> computed 2 for its part PIN.
: J¢U:MAXER-61> computed 5 for its part C from pins A, B.

DONE

Once the value 3 has been retracted, the assumption for b is free to re-assert the value 2. ‘This
occurs because when the default value 3 is forgotten for ¢, the nogood set {(b, 2), {c, 3), (a, 5)} is
examined in the function forget and all relevant owners awakencd. From this assumed value 2

an

d the default value 5. the value 5 is computed for c.

(what (the a u))

:The value 5 in CELL-63 was computed in this way:
: (THE A U) ¢ 6

OKAY?

(what (the b u))
:The value 2 in CELL-65 was computed in this way:

(THE B U) ~ (ASSUMPTION 2)

OKAY?
(what (the c u))

160 CuaprriEr Fivi ASSUMPTIONS

;The value 5 in CELL-67 was computed in this way:
;' (THE C U) « (MAX 5 (ASSUMPTION 2))
OKAY?

Nowa =5b=2 andc = 5.
Suppaose now that we asseit the default value 0 for ¢. This is similar to the situation carlier
where 3 was asserted for ¢, with one difference: then, the assumed values a == | and b = 2 were

..T__V_.___-.N

individually compatible with ¢ = 3, and only in combination contradictory; here, however, the
assumptions are individually incompatible with ¢ = 0. and so we expect borh assumptions to be
suppressed.

(== (the c u) (default 0)) i 4
: i|Contradiction when merging <CELL-67 (C of U): 5> and <CELL-79 (DEFAULT): 0>.
r ;|Deeming 2 in CELL-73 (computed by rule ASSUMPTION-RULE) to be the culprit.
i|The set (THE PIN ASSUMPTION-71)=2, CELL-77=5, CELL-79=0 is no good.
| ;{Retracting the premise <CELL-73 (PIN of ASSUMPTION-71): 2>.
‘ :|Removing 2 from (THE PIN ASSUMPTION-71).
:|Removing 6 from (THE C U) because (THE B U)==(THE PIN ASSUMPTION-71).

The computed value 5 in ¢ conflicted with the new value 0, and was withdrawn because it de-
pended on an assumption, ‘.

i[Contradiction in <U:MAXER-61> among these parts: A=5, C=0.
.i: These are the premises that seem to be at fault:

; . <CELL-77 (DEFAULT): 5>,

; <CELL-79 (DEFAULT): 0>.

;i3 Choose one of these to retract and RETURN it.

Morcover, the value 5 in for a conflicts with the value 0 for ¢. We will retract the value 5 for a

(return cell-79)
;|Retracting the premise <CELL-77 (DEFAULT): 5>.
: |[Removing 5 from CELL-77.

At this (highly volatile!) point, the only value extant is 0 for ¢. However, the assumptions are about
to be awakened.

;| CASSUMPTION-71:ASSUMPTION-71> computed 2 for its part PIN. !
i|Contradiction in <U:MAXER-61> among these parts: B=2, C=0.

;|Deeming 2 in CELL-73 (computed by rule ASSUMPTION-RULE) to be the culprit.
i|The set (THE PIN ASSUMPTION-71)=2, CELL-79=0 is no good.

;|Retracting the premise <CELL-73 (PIN of ASSUMPTION-71): 2>.

;|Removing 2 from (THE PIN ASSUMPTION-71).

The assumption for b trics out the value 2 and is rebuffed. A nogood set is formed, and the

assumption retracted.

§54.2 Examples of the Use of Assumptions 161

;] CASSUMPTION-68:ASSUMPTION-68> computed 1 for its part PIN.

;|Contradiction in <U:MAXER-61> among these parts: A=1, C=0.

;|Deeming 1 in CELL-70 (computed by rule ASSUMPTION-RULE) to be the culprit.
;|The set (THE PIN ASSUMPTION-68)=1, CELL-79=0 is no good.

i |Retracting the premise <CELL-70 (PIN of ASSUMPTION-68): 1>.

;|Removing 1 from (THE PIN ASSUMPTION-68).

DONE

Preciscly the same fate befalls the other assumption of 1 for a. tuis still the case that the only extant
valuc is 0 for ¢. However, it is now known wiy the assumptions cannot hold, and this information
has been recorded in nogood sets.

(what (the a u))

;CELL-63 has no value. I can express it in this way:
: (THE A U) = (ASSUMPTION 1)

OKAY?

(what (the b u))

;CELL-65 has no value. I can express it in this way:
; (THE B U) = (ASSUMPTION 2)

OKAY?

These explanations are a little strange. Probably what should be augmented to usc nogood infor-
mation to cxplain the absence of a value, but this thought is not pursucd here.

I.ct us finally disconncct ¢ from the other cells of its node (and in particular the default
cell supplying the value 0).

(disconnect (the c u))

;|Disconnecting (THE C U) from CELL-75, CELL-79.

; |[Removing 0 from (THE C U).

i | CASSUMPTION-71:ASSUMPTION-71> computed 2 for its part PIN.
i |[CASSUMPTION-68:ASSUMPTION-68> computed 1 for its part PIN.
i |<U:MAXER-61> computed 2 for its part C from pins A, B.
DONE

Disconnecting ¢ from the source of the value 0 causcs all the old nogood information to be ex-
punged. This awakens the assumptions. whicl. find no nogood scts to suppress their values. From
the assumptions a new valuc is computed for ¢.

(what (the ¢ u))

:The value 2 in CELL-67 was computed in this way:

; (THE C U) « (MAX (ASSUMPTION 1) (ASSUMPTION 2))
OKAY?

‘This brings us full circle, to the beginning of the example.

oo

162 Cnarter Five ASSUMPTIONS

(declare (special scontradictionss sbacktrackss))

(defun queens (n)
(setq scontradictionss Q)
(setq sbacktrackss 0)
(queenszarch ‘() n 0)
(format . ""%Total of ~D contradictions and ~D backtracks."
scontradictionss sbacktrackss)
‘done)

(defun gqueensearch {(previous n k)

(cond ((= k n)

(format
t

i "“%Solution: (7{°D~1,7}) after "D contradictions and "D backtracks."
’ (reverse previous) scontradictionss sbacktrackss))
. (t (dotimes (i n)
i (do ((x previous (cdr x))

‘ (3 1(+j 1N

((null x)
(queensearch (cons i previous) n (+ k 1)))
(cond ((or (= i (car x)) ;column test
(= (- i (car x)) j) ;diagonal test
(= (- (car x) i) j)) ;other diagonal test

(ctrace "Contradiction: (T{"D7t,”}) kills "D."
(reverse previous) i)
(increment scontradictionss)

(return)))))

(increment sbacktrackse))))

TaniE5-18. A LISP Solution to the N Queens Problem.

54.2. Oncof Assumptions Can Express and Solve the Four Queens Problem

The generalized N queens problem is that of placing N chess queens on an N by N
chessboard so that no two queens attack cach other; that is to say, no two queens arc on the same
row, column, or diagonal. The usual approach notes that every row must have exactly onc queen on
it, and then tries to place one gucen on cach row. Using this idea the problem may be formulated
as: for0 < ¢ <N find 0 < ¢; << N such that

Vivi (0<i<NAO<j<NAi#j)= {
(G#GNG—aF#T—iANG—qFi—]))

o=

This is a standard problem uscd to illustrate backtracking control structures, because a solution
to the problem can casily be expressed as a non-deterministic program: for cach row, non-
deterministically choose a column in that row; then check to sec whether there is a conflict on any ' g
column or diagonal. In a sequential simulation of a non-deterministic program, a conflict causes a
failure back to the most recent choice point.

§54.2 Examples of the Use of Assumptions 163

A LISk program for the usual solution to the N qucens problem is shown in Table 5-18.
Rather than using explicit backtracking and failurc mechanisins, it merely takes advantage of the
obscrvation in [Sussman 1972] that chronological backtracking mechanisms are cquivalent to a
scries of nested do loops. Each recursive call o queensearch trics to choose a column for
one row (row k; rows and columns arc numbered starting with 0). [t loops o+er all choices from
0 to N — 1 using dotimes, and for cach choice checks for a conflict with all previous choices
(which arc in the list previous). If a conflict is found, a contradiction is noted via the trace
mechanism and a counter «contradictions= incremented (for statistical, not algorithmic, pur-
poses). 1f no conflict exists, the choice is added to the previous list and a recussive call made to
choose for the next row. If all choices fail, cither immediately or because a recursive call returned,
then queensearch returns (after incrementing another counter, «backtrackss) so that the
previous row may try a new choice. (T'he program as it stands will find «// solutions, not just one.
'T'o find just one, a non-local exit could be made after printing a solution.)

As an example of running the queens program, here is the output (with tracing turned off)
forthecases N = 4, N = 6, and (inpart) N = 8:

NIL

(queens 4)

Solution: (1,3,0,2) after 18 contradictions and 4 backtracks.
Solution: (2,0,3,1) after 26 contradictions and 7 backtracks.
Total of 44 contradictions and 15 backtracks.

DONE

(queens 6)

Solution: (1,3,5,0,2,4) after 140 contradictions and 25 backtracks.

Solution: (2,5,1,4,0,3) after 334 contradictions and 64 backtracks.

Solution: (3,0,4,1,5,2) after 408 contradictions and 79 backtracks. 1

Solution: (4,2,0,5,3,1) after 602 contradictions and 118 backtracks. {

Tota) of 742 contradictions and 149 backtracks.)

DONE "

(queens 8) ’!

Solution: (0,4,7,5,2,6,1,3) after 763 contradictions and 105 backtracks. b
[Ninety solutions omitted.} ?

Solutioan: (7,3,0,2,5,1,6,4) after 12901 contradictions and 1852 backtracks.
Total of 13664 contradictions and 1965 backtracks.
DONE

The two solutions for N = 4 are: .

164 CnArteRr Five ASSUMPTIONS

‘The trouble with chronological backtracking is that often choices are undone because of
failures that did not (necessarily) stem from those choices. Suppose, for example, that for the 6
quceens problem queens have been suceessfully placed in the first four rows, and a choice is to be
made for the last row:

None of the squarces of the last row is a valid place for a queen. Under a chronological
backtracking regime, this failurc will first causc a new choice for the queen in the second-to-last
row. This is somewhat paradoxical, as the configuration for the first four rows collectively kills
all squarcs of the last row, and so cannot appear in any valid solution, while the queen in the
penultimate row can appear in that column in a valid solution!

Another problem with chronological backtracking is that when a faiture occurs all information
as to why that failure occurred is thrown away. [Sussman 1972] o the context of the N queens
problem, it can well occur that a large serics of configurations for the last several rows is tried and
discarded, then failure causcs one queen in an carly row to be nudged over, and then many of the
same configurations of the last several rows must be investigated once again—cyven if their failure
had not depended on the queen that got nudged!

The 11sk program of Table 5-18 cxaminces cighteen invalid board positions before finding
a solution. ‘These are shown in Figure 5-8. 'The small dark circles indicate queens. A line
drawn between two queens indicates a conflict on a column or diagonal. A lJight circle around a
qucen indicates the culprit—the one which will be changed as a result of the contradiction (under
chronological backtracking, the culprit is always the last queen placed). A bold circle around a
queen indicates an indirect culprit—a gqueen that must be moved because all the choices for the
previous culprit had been exhausted.

The contradiction in situation (g) is the samc as that in situation (c). This contradiction had to
be rediscovered when the queen in the second row was moved, even though that queen had had
nothing to do with the contradiction. ‘There are no other examples of this in the N = 4 casc, but
for large N it happens quite frequently.

w

SN

PR I AP

—— —————— e e e L

o

g T——

1
§5.42 Examples of the Use of Assumptions 165 ‘_

® e e
@ & e »

(a) (b) (c) (L}

©
@

(e) {f) (g) (h)

{m) {n) (o) (p}

Q e

®to

lq) (r) (s)

FIGURE 5-8. Situations Examiped for Four Queens Using Chronological Backtracking,

}

166 CHAPTER FIvE ASSUMPTIONS r
(variable q0) (variable ql) (variable q2) (variable q3) ;variables
{create e01 equality) ;column constraints
(create e02 equality)
(create e03 equality)
(create el2 equality)
(create e13 equality)
(create e23 equality)
(== (the a e01) q0) (== (the b e01) ql1) (== (the p e01) (constant 0))
(== (the a e02) q0) (== (the b e02) q2) (== (the p 602) (constant 0))
(== (the a e03) q0) (== (the b 803) q3) (== (the p e03) (constant 0)) r
(== (the a e12) q1) (== (the b @12) q2) (== (the p e12) (constant 0))
(== (the a el3) q1) (== (the b @13) q3) (== (the p el3) (constant 0))
(== (the a e23) q2) (== (the b e23) q3) (== (the p e23) (constant 0))

TABLE 5-19. Constraints for the Four Queens Problem (i).
(create xe01 equality) (create xa0l adder) inorthwest-to-southeast !
(create xe02 equality) (create xa02 adder) ; diagonal constraints
(create xe03 equality) (create xa03 adder) v
(create xel2 equality) (create xal2 adder)
(create xel3 equality) (create xall adder)

(create xe23 equality) (create xa23 adder)

(== (the a xa01) q0) (== (the ¢ xa0l) q1) (== (the b xaOl) (the a xel1)) R

(== (the a xa02) q0) (== (the ¢ xaf2) q2) (== (the b xa02) (the a xe02)) !
_ (== (the a xa03) q0) (== (the c xa03) g3) (== (the b xa03) (the a xe03)) ¥,
’ (== (the a xal2) ql1) (== (the ¢ xal2) g2) (== (the b xal2) (the a xel2)) i”

(== (the a xa13) q1) (== (the c xal13) q3) (== (the b xal3) (the a xel3)) K

(== (the a xa23) q2) (== (the ¢ xa23) q3) (== (the b xa23) (the a xe23))

(== (the b xe01) (constant 1)) (== (the p xe01) (constant 0)) !

(== (the b xe02) (constant 2)) (== (the p xe02) (constant 0))

(== (the b xe03) (constant 3)) (== (the p xe03) (constant 0))

(== (the b xel2) (constant 1)) (== (the p xel2) (constant 0))

(== (the b xel13) (constant 2)) (== (the p xe1ld) (constant 0})

(== (the b xe23) (constant 1)) (== (the p xe23) (constant 0))

TABLE 5-20. Constraints for the Four Queens Problem (ii).

§54.2 ' Examples of the Use of Assumptions 167

(create ye0l equality) (create yall adder) isouthwest-to-northeast
(create ye02 equality) (create yald2 adder) ; diagonal constraints
(create ye0d equality) (create ya03 adder)
(create yel2 equality) (create yal2 adder)
(create yel3 equality) (create yalld adder)
(create ye23 equality) (create ya23 adder)
(== (the a ya01) q0) (== (the c ya0l1) ql) (== (the b ya01) (the a ye0l))
(== (the a ya02) q0) (== (the c ya02) q2) (== (the b ya02) (the a ye02))
{== (the a ya03) g0) (== (the c ya03) q3) (== (the b ya03) (the a ye03))
(== (the a yal2) 41) (== (the c yal2) q2) (== (the b yal2) (the a yel?2))
(== (the a yal3) gqi) (== (the ¢ yal3) q3) (== (the b yald) (the a yell)) -
(== (the a ya23) q2) (== (the ¢ ya23) q3) (== (the b ya23) (the a ye23))
(== (the b ye01) (constant -1)) (== (the p yeO1) (constant 0))
(== (the b ye02) (constant -2)) (== (the p yed2) (constant 0)) ;
(== (the b ye03) (constant -3)) (== (Lhe p ye03) (constant 0)) !
(== (the b ye12) (constant -1)) (== (the p yel2) (constant 0)) X
(== (the b yel3) (constant -2)) (== (the p yel3) (constant 0))
(== (the b ye23) (conslant -1)) (== (the p ye23) (constant 0))
TanLE §-21. Constraints for the Four Queens Problem (ifi).
(== q0 (oneof (0 1 2 3))) ;assumptions
(== q1 (oneof ‘(0 1 2 3)))
{== q2 (oneof /(0 1 2 3)))
(== q3 (oneof ‘(0 1 2 3)))
TABLE 5-22. Constraints for the Four Queens Problem (iv).

pey

O

r—

)
i

168

CHAPTER FIVE

=i
A

=

ASSUMPHIONS

-

XA12

A,

N’ XEQ2

~Z |
S S ——
)

XAQ2

]

Z H

I.

a3
€23
E13

XE23

XA23

()| O=

XE13

=}

XA13

HE

#_

9_:

=HH =1

D2

|

FIGURE 5-9. Constraint Network for the Four Queens Problem.,

I H

-

vYEQ) YAO! é YE12 -;Mz é YE23 YA23

Z H =
YEO2 00 7~ yco3 'AO% YET3 a1

Z - | Y=
L)L +
LEGEND
0
-1 # — means @

§5.4.2 Examples of the Use of Assumptions 169

Table 5-19, Table 5-20, Table 5-21, and Table 5-22 show the constraints for the case of four
queens. The variables g0, q1, g2, and g3 represent the column numbers of the queens in rows
0.1, 2. and 3. respectively. The equalities e mn have their p pins equated to zero, and so require
that qm and qn be different, for cach pair m. n. ‘Yhe equalitics xemn and the adders xamn
enforce the relationships qn— qu % n— m: similarly, the cqualities ye mn and the adders yamn
enforce the relationships g — qn 52 m — n. 'The constraints are diagranuned in Figure 5-9.

Running this constraint network causes twelve contradictions o oceur before a valid situation f
is achieved (valid situations of course constitute solutions o the problem). ‘The sequence of situa-
tions considered is shown in Figure 5-10. 1t initially follows the same sequence of situations as in ;
lFigure 5-8, except that situation (g) is skipped over tbecause that contradiction had been cxplored

alrcady. and the record shows that it is independent of q1). Note, however, that unlike the 1isp
program of Table 5-18, the constraint system does not guur;mlcb to check the constraints in any
particular order. The 11sP program always finds a contradiction with the most recent already placed
quecn that conflicts. because it searches the rows in that order. The constraint language docs not
specify any temporal ordering, and the system is free to check the constraints in any order (or even

in paralel). ‘Thus, for example. m situation (i) the system happened to record a conflict between q3

and q1 rather than between g3 and q2. Fither conflictis an equatly good reason for rejecting the
sitwation. Similarly, in situation (k) the system noted a contradiction between g3 and q0 where
the 1ISP program had seen a conthict hbetween g3 and ql1. Moreover, in situation (k) the 1isp
program chose g2 as the indirect cuiprit, because it must always retract the most recent choice,
whether relevant or not; but the constramt system was free to choose any previous relevant choice
as the culprit, and in fact it serendipitously chose Q0. producing situation (x). From there it was
only two more steps to a solution. {Note that a situation (7) with g3 = 1 was skipped over because
of the contradiction previously recorded for situation (i).)

The trace output from the run is given here in condensed form without commentary. Trace
messages concerning awakening of devices and remaving of values have been climinated, as have
messages saying that devices computed volues for their parts, except that those concerning the

oneof cclls have been retained.

: | CONEOF -889:0NEQOF -889> computed 0 for its part PIN. ‘l
. | CONEOF-832 :ONEOF -892> computed 0 for its part PIN. 1
;|Contradiction in <EO1:FQUALITY-619> among these parts: P=0, A=0, B=0;

il it calculated 1 for P from the others by rule EQUALITY-RULE-16.

:|Deeming 0 in CELL-894 (computed by rule ONEOF-RULE) to be the culprit.

:|The set CELL-662=0, (THE PIN ONEOF-889)=0, (THE PIN ONEOF-892)=0 is no good.
i JRetracting the premise <CELL-894 (PIN of ONEOF-892): 0>.

: |CONEOF-B92:0NEOF-892> computed 1 for its part PIN.

;|Contradiction in <XEO1:EQUALITY-673> among these parts: P=0, A=1, B=1;

170

CHAPTER FIVE

ASSUMPTIONS

it calculated t for P from the others by rule EQUALIITY-RULE-16.

o @ ©
N
® ©
© ©|
(a) (b) (c) (d)
6 o L & ®
© » ©
(e) n (h) (i}
e @) @)
© ANER L) e
© b
i) (k) {x) (y)
L
o
®
o
(s)
FIGURE 5-10. Sutuations Examined for Four Queens Using Non-chronofogical Backtracking.

;|Deeming 1 in CELL-894 (computed by rule ONEOF-RULE) to be the culprit.
:|{The set CELL-758=1, CELL-760=0, (THE PIN ONEQF-889)=0,

(THE PIN ONEOF-892)=1 is no good.

j

§54.2 Examples of the Use of Assumptions 171

- ;|Retracting the premise <CELL-894 (PIN of ONEOF-892): 1>.
; | CONEQOF -892 :ONEOF -892> computed 2 for its part PIN.
: | CONEOF-895:ONEOF-895> computed 0 for its part PIN.
:|Contradiction in <E02:EQUALITY-626> among these parts: P=0, A=0, B=0;
:| it calculated 1 for P from the others by rule EQUALITY-RULE-16.
:|Deeming 0 in CELL-897 (computed by rule ONEOF-RULE) to be the culprit.

;|The set CELL-664=0, (THE PIN ONEOF-889)=0, (THE PIN ONEOF-895)=0 is no good.

;|Retracting the premise <CELL-897 (PIN of ONEOGF-895): 0>,

: | CONEOF-895:0ONEOF-895> computed 1 for its part PINM.

i|Contradiction in <YE12:EQUALITY-823> among these parts: P=0, A=-1, B=-1;
;] it calculated 1 for P from the others by rule EQUALITY-RULE-16.

; |Deeming 1 in CELL-897 (computed by rule ONEOF-RULE) to be the culprit.
;|The set CELL-878=-1, CELL-880=0, (THE PIN ONEOF-892)=2,

H| (THE PIN ONEOF-895)=1 is no good.

; |Retracting the premise <CELL-897 (PIN of ONEOF-895): 1>.

; | CONEQOF-895:0ONEQF-895> computed 2 for its part PIN.

;|Contradiction in <XEQ2:EQUALITY-687> among these parts: P=0, A=2, B=2;
i] it calculated 1 for P from the others by rule EQUALITY-RULE-16.

; |Deeming 2 in CELL-897 (computed by rule ONEOF-RULE) to be the culprit.
i|The set CELL-762=2, CELL-764=0, (THE PIN ONEOF-889)=0,

i (THE PIN ONEQF-895)=2 is no good.

;|Retracting the premise <CELL-897 (PIN of ONEQF-895): 2>.

; | CONEOF-895:0NEQF-895> computed 3 for its part PIN.

;|Contradiction in <XE12:EQUALITY-715> among these parts: P=0, A=1, B=1;
;] it calculated 1 for P from the others by rule EQUALITY-RULE-16.

; |Deeming 3 in CELL-897 (computed by rule ONEOF-RULE) to be the culprit.
;|The set CELL-770=1, CELL-772=0, (THE PIN ONEOF-892)=2,

il | (THE PIN ONEOF-895)=3 is no good.

i [Retracting the premise <CELL-897 (PIN of ONEOF-895): 3>.

i |A11 of the values (0 1 2 3) for (THE PIN ONEOF-895) are no good.
:|Deeming 2 in CELL-894 (computed by rule ONEOF-RULE) to be the culprit.
;|The set CELL-664=0, CELL-762=2, CELL-764=0, CELL-770=1, CELL-772=0,

| CELL-878=-1, CELL-B80=0, (THE PIN ONEOF-889)-=0,

o (THE PIN ONEOF-892)=2 is no good.

; |[Retracting the premise <CELL-894 (PIN of ONEOF-892): 2>,

: | CONEQOF-892:0NEOF-892> computed 3 for its part PIN.

: | CONEOF-895:0NEOF-895> computed 1 for its part PIN.

; |CONEQF-898 :ONEOF -898> computed 0 for its part PIN,

:|Contradiction in <YE23:EQUALITY-851> among these parts: P=0, A=-1, B=-1;
i] it calculated 1 for P from the others by rule EQUALITY-RULE-16.

; |Deeming 0 in CELL-900 (computed by rule ONEOF-RULE) to be the culprit.
;|The set CELL-886=-1, CELL-888=0, (THE PIN ONEOF-895)=1,

A (THE PIN ONEOF-838)=0 is no good.

:|Retracting the premise <CELL-900 (PIN of ONEOF-898): 0>.

; | CONEOF-898:0NEOF -898> computed 1 for its part PIN,

ijContradiction in <YE13:EQUALITY-837> among these parts: P=0, A=-2, B=-2;
:} 1t calculated 1 for P from the others by rule EQUALITY-RULE-16,

; |Deeming 1 in CELL-900 (computed by rule ONEOF-RULE) to be the culprit.

Dt

o

P
N TN LI ey

ke

-

'II.|l-.IllIIl!Illll-l!lIII-l--'l-'!lllllllllIlllIllIll'IllllII!-IIlll-""-ll—lllllll'-‘bwv

172 Cuarter Fiveis ASSUMPLIONS

:{The set CELL-882=-2, CELL-884=0, (THE PIN ONEOF-892)=3,

i (THE PIN ONEOF-898)=1 is no good.

i |Retracting the premise <CELL-900 (PIN of ONEOF-898): 1>.

i |[CONEOF-898:0ONEOF-898> computed 2 for its part PIN,

i{Contradiction in <XE23:EQUALITY-743> among these parts: P=0, A=1, B=1;

i|] it calculated 1 for P from the others by rule EQUALITY-RULE-16.

:|Deeming 2 in CELL-900 (computed by rule ONEOF-RULE) to be the culprit.

1|The set CELL-778=1, CELL-780=0, (THE PIN ONEOF-895)=1,

| (THE PIN ONEOF-898)=2 is no good.

:|Retracting the premise <CELL-900 (PIN of ONEOF-898): 2>.

; | CONEOF -898 : ONEOF-898> computed 3 for its part PIN.

i|Contradiction in <XEQ3:FQUALITY-701> among these parts: P=0, A=3, B=3;

;] it calcutated 1 for P from the others by rule EQUALITY-RULE-16.

;|Deeming 3 in CEL!-900 (computed by rule ONEOF-RULE) to be the culprit. r%

;]The set CELL-766=3, CELL-768=0, (THE PIN ONEOF-889)=0, E

o (THE PIN ONEOF-898)=3 is no good.

:|Retracting the premise <CELL-900 (PIN of ONEOF-898): 3>. }

;A1 of the values (0 1t 2 3) for (THE PIN ONEOF-898) are no good. 1
y
X

i |Deeming 0 in CELL-891 (computed by rule ONEOF-RULE) to be the culprit.
;1The set CELL-766=3, CELL-768=0, CELL-778=1, CELL-780=0, CELL-882=-2,
3 CELL-884=0, CELL-886=-1, CELL-888=0, (THE PIN ONEOF-889)=0, .
il (THE PIN ONEQF-892)=3, (THE PIN ONEOF-895)=1 is no good. V’
:|Retracting the premise <CELL-891 (PIN of ONEOF-889): 0>. "
: | <ONEOF-889:0NEOF-889> computed 1 for its part PIN. {
i]Contradiction in <E02:EQUALITY-626> among these parts: P=0, A=1, B=1;

! il it calculated 1 for P from the others by rule EQUALITY-RULE-16.

‘ ;|Deeming 1 in CELL-897 (computed by rule ONEOF-RULE) to be the culprit.

, ;|The set CELL-664=0, (THE PIN ONEOF-889)=1, (THE PIN ONEOF-835)=1 is no good.

i |Retracting the premise <CELL-897 (PIN of ONEOF-895): 1>.

; | CONEOF -895:ONEOF -895> computed 0 for its part PIN.

: |<ONEOF-898:0ONEOF-898> computed O for its part PIN.

;]Contradiction in <E23:EQUALITY-654> among these parts: P=0, A=0, 8=0;

;| it calculated 1 for P from the others by rule EQUALITY-RULE-16.

;|Deeming 0 in CELL-900 (computed by rule ONEOF-RULE) to be the culprit.

:|The set CELL-672=0, (THE PIN ONEOF-895)=0, (THE PIN ONEOF-898)=0 is no good.

i|Retracting the premise <CELL-900 (PIN of ONEOF-898): 0>.

; | CONEOF -898:ONEOF -898> computed 2 for its part PIN,

DONE

This example shows that a dependency-directed backtracking system is at Icast potentially L
much more eflicient than a chronological backtracking system. Of course. this run was a little lucky: '
it could just as casily have followed the same path as the TSP program, skipping only situation
(g). If. however, there were a higher-level decision function controlling which constraints to try \
first, then the system might always perform much beuter. (Thus we are lead to the idea of meta-

constraints, for controlling the operations of the constraint interpreter.) Suppose, for example, that '
a dependency-directed backtracking system for the N quceens problem were always to obey these

§54.2 Examples of the Use of Assumptions 173

additional cfficiency heuristics:

o 'The first & queens must be validly placed before trying to place queen k + 1. (The constraint
system happened to behave in this manner for the previous example, but the constraint lan-
guage docs not guarantee o try the assumptions in a nested-loop order. The system is in
principle free to try assumptions in any order—but this fact is being suspended as a heuristic
here.)

e When checking a placement for a queen and it conflicts with more than one previously placed
queen, the feast recently placed conflicting queen should be held responsible for the conflict.

© (This 1s equivalent to checking previous queens in the reverse of the order used by the LISP
program.)

e When a culprit must be chosen, always choose the most recently placed queen of those respon-
sible for the contradiction (according to the records).
If these ordering heuristics are followed, then sixteen invalid positimis arc tried before a solution is
found.
‘To puint up once more the need for explanation mechanisms to exploit the nogood sets, here
are given the explanations for the values of g0, g1, 92, and g3 at the end of the above run.

(what q0)

;The value 1 in CELL-612 was computed in this way:
v Q0 « (ONEOF (0 1 2 3))

OKAY?

(what g1)

;:The value 3 in CELL-614 was computed in this way:
H Q1 « (ONEOF (0 1 2 3))

OKAY?

(what q2)

;The value 0 in CELL-616 was computed in this way:
: Q2 « (ONEOF (0 1 2 3))

OKAY?

(what q3)

;The vaiue 2 in CELL-618 was computed in this way:
: Q3 « (ONEOF (0 1 2 3))

OKAY?

‘These explanations arc singularly unsatisfying: they imply "l just guessed them.” This is partly]
truc, but fails to take into account the additional constraints imposed and the tremendous computa-
tional cflort invested in satisfying them,

This cntire example has assumed that the cost of avoiding cxamining a position by using
nogood scts is less than the cost of just gencrating the position and checking it. This may not be the .
casc for this example with this implementation of the constraint system. However, nogood sets can 4
save a great deal when the cost of generating and checking a position is Large. ‘They can also save a

174 CHAPTER FIVE ASSUMP{IONS

great deal when not all the choices are directly connected to each other. In the N queens problem,
every choice interacts with every other choice. 1f cach choice were to interact with only some other
choices, then nogoeod sets can climinate many more cascs.

5.5. Discussion of the Assumption and Nogood Set Mechanisms

As of the end of Chapter Four, before the assumption mechanisms were introduced, the con-
straint system strove to compute the largest possible set of values that could be both consistently
and determinately asserted. Consistency means that no constraints are violated: determinacy means
that no arbitrary choices on the part of the system are involved—a computed value for a node must
be the case. and no other value will do for that node. Any value that is forced is asserted, and only
those that are forced. Thus the system would conservatively compute a minimal maximal sct of
values: let us call this the sct of required values.

Assumption mechanisms allow a constraint network to compute a larger set of values. One
could imagine a constraint system that would automatically make assumptions about the values of
nodes when no farced values can be computed for them. Such a system would ¢ndeavor to find
consistent values for the greatest possible number of nodes, in some sense. Such a sct of values
would perforce contain the sct of required values as a subsct. Thus we can say that an assumption
mechanism tries to find consistent extensions of the set of required values.

One difficulty with a general, domain-independent automatic assumption mechanism is that it
may well thrash, perhaps even trying to solve the unsolvable, It is all too casy to set up Diophantine
cquations whosc solutions involve extremely large integers that would be infeasible to guess.

The mechanism we have exhibited here is a compromise between a fully automatic assump-
tion mechanism and none at all. 'The assumption constructs added to the language pennit the user
to explicitly advise the system on which cxtensions to pursue and what values to try. The assume
construct in cffect says, “The cxtension for which this node has value n may be interesting, if it
is consistent.”” By connecting scveral assume cells together, a number of alternative cxtensions
involving the same node can be suggested, and the system can choose among them, In this way
which nodes to consider for extension are explicitly indicated, and the scarch space for each node
defincated. The oneof construct adds a little more power by providing a total predicate for the
scarch possibilitics. This gives one the leverage to perform exhaustive casc analysis and perform
resolution on nogood sets.

For some purposcs it might be uscful to separate two propertics of the oneaf construct: the
limiting of the value space to a definite finite set, and the advice to try an cxtension by assuming
one. If there were a construct valuespace for the former property alone, then the effect of

(== x (oneof ‘(u b ¢ ...)))

o~

[
|
i
i 4
i)

§55 Discussion of the Assumption and Nogood Set Mechanisnis 175

(defprim firstoneof (pin))

(progn ‘compile
(push ’'firstoneof-rule (ctype-rules firstoneof))
(defprop firstoneof-rule () trigger-names)
(defprop firstoneof-rule (pin) output-names)
(defprop firstoneof-rule firstoneof tentative)
(firstoneof rule))

(defun firstoneof (valuelist)
(let ((a (gen-constraint firstoneof (})))
(setf (con-name a) (con-id a))
(setf (con-info a) valuelist)
(awaken a)
(the pin a)))

(defprop firstoneof ((pin (firstoneof !))) treeforms)
Compare this with Table 5-3.

TABLE 5-23. Implementation of the firstoneof Construct.

could be achieved by

(== x (valuespace “(a b c ...}))
(== x (assume a))
(== x (assume b))
(== x (assume c))

The latter states that it is an error for x to take on a value not among a, b, c. . . ., and scparately that
each of these value may be considered for constructing extensions. There might be uses for wanting
to advisc the system that only some of the valucs are uscful to try for extensions.

The notion of valuespace itsclf can be divided into two parts. One part is triggered when
a new value is computed, and raiscs a contradiction if the value is not in the sct. The other part
is triggered when a valuc is forgotten, and examines nogood sets to sce whether resolution can be
performed. An instance of the first part is built into the gate and equality primitives of Table
2-7 (page 53) and Table 3-5 (page 79): cach has a rule which signals a contradiction if the p pin has
a value other than 0 or 1. However, the rule has no provision for making a deduction by resolution
if both 0 and 1 arc tricd and fail. There scems to be no gain in having one part without the other.

The assumption mechanisms given here provide no means for ordering values to be tried,
either locally (at a single node) or globally (among several nodes). The oneof construct, as imple-
mented here, happens to try the valuces in the order stated. However, the definition of the construct
at the user language level docs not guarantee this; the system is free to try values in any order. A
slightly different distinction is that the oneof construct docs not guarantce always to assert the

s : et S e i

——— e T g
. i 503, i

ks b

176 CHAPTER FIVE ASSUMPTIONS

carliest consistent value in the list. When it is asked to assume a new value, it happens (in this
implementation) 1o scan the list in order, looking for possibilitics. However, if the third value
in the list is consistently asserted, and then a nogood set for some reason forbids the first value
in the list to be consistently asserted, oneof will not notice this. The possibly uscful construct
firstoneof would notice this, and strive always to assert carlicr values in the list if possible.
That is, it would undertake always to construct an extension using the carliest possible value in its
list. As an cxample. consider two parallel examples using oneof and firstoneof. [n each case
an adder is created, the a and b pins equated to 1, the ¢ pin cquated to an assumption, and then
the b pin disconnected from its constant.
(create foo adder)

{F0O:ADDER-385>
== (the a foo) (constant 1))

DONE

== (the b foo) (constant 1))
DONE

== (the ¢ foo) (oneof ‘(0 1 2 3)))
DONE

(what (the ¢ foo))

;The value 2 in CELL-391 was computed in this way:
: (THE C FOO) « (ONEQF (0 1 2 3))

OKAY?

(disconnect (the b foo))

DONE

(what (the c foo))

;The value 2 in CELL-391 was computed in this way:
: (THE C FOO) « (ONEOF (0 1 2 3))

OKAY? .

(what (the b foo))

;The value 1 in CELL-389 was computed in this way:
; (THE B FOO) « (- (ONEOF (0 1 2 3)) 1)

OKAY?

The value 2 remains on the ¢ pin—the oneof cell is happy with i1y of its four valucs. On the
other hand:

(create bar adder)
<BAR:ADDER-400>
(== (the a bar) (constant 1))
DONE
(== (the b bar) (constant 1))
DONE
{(:: (the c foo) (firstoneof '(0 1 2 3)))
NONE
{what (the ¢ bar))
The value 2 in CELL-406 was computed in this way:

PR ——

s fao

§5.5 Discussion of the Assumption and Nogood Set Mechanisms 177

(defun firstoneof-rule (smes)
(let ((srules ’'firstoneof-rule)
{pin-cell (the pin smes)))
(let ((values {con-info smes)))
(do-named loop-over-possibilities
((v values (cdr v))
(killers “()))
({aull v)
(ctrace "All of Lhe values S for 7S are no good."
values
(cell-gcodname pin-cell))
(let ({losers “()))
(dolist (killer killers)
(dolist (x (cdr killer))
(or (eq (car x) (celli-repository pin-cell))
(let ((cell (if (rep-boundp (car x))
(rep-supplier (car x))
(car (rep-caells (car x)))))) J?77
(or (memqg cell losers)
(push cell losers))))))
(process-contradiction losers))
(firstoneof-rule =mes))
(do-named outer-loop
((x (cdr (assoc (car v) (node-nogoods pin-cell)))
(cdr x)))
{((null x)
(cond ((node-boundp pin-cell)
(and (not (equal (node-contents pin-cell) (car v)))
(cond ((eq (node-supplier pin-cell) pin-cell)
(retract pin-cell)
(setc pin (car v)))
(t (contradiction pin)))))
(t (setc pin (car v))))
(return-from loop-over-possibilities))
(do-named inner-loop
((c (cdar x) (cdr c)))
((null c)
(push (car x) killers)
(return-from outer-loop))
{and (not (eq (caar c) (cell-repository pin-cell)))
(or (not (rep-boundp (caar c)))
(not (equal (rep-contents (caar c)) (cdar c))))
(return-from inner-loop))))))))

Compare this with Table 5-4.

TABLE 5-24. The Rule for firstoneof.

; (THE C_BAR) ¢ (FIRSTONEOF (0 1 2 3))

OKAY?

(disconnect (the b bar))

DONE

(what (the c bar))

;The value 0 in CELL-406 was computed in this way:
; (THE C BAR) + (FIRSTONEOF (0 1 2 3))

il

178 CHAPTER FIVE ASSUMPTIONS

o —d7 L

Il H

o 606
¥

—

FIGURE 5-11. Constraint Network for Muking a General Choice.

0KAY?

(what (the b bar))

:The vatue -1 in CELL-404 was computed in this way:
; (THE B BAR) « (- (FIRSTONEOF (0 1 2 3)) 1)
OKAY?

When the constant 1 was removed from (the b bar), the firstoneof cell noted that the
value 0 was no longer forbidden, and retracted the valuce 2 to try the value 0 again, which in fact
worked. Thus firstoneof always trics to usc the first consistent value in its list. The code for
firstoneof (a trivial modification to that for oneof) appearsin T'able 5-23 and Table 5-24.

One might wish to have a more general oneof mechanism then selection from a set of con-
stants. It would be uscful to have a kind of device called, say, choice, with pins named x, a0,
al,..., an (for (n -+ 1)-way multiplexing); the intent is that x would be connected to exactly one
of the other pins. Obscrve, however, that this is a special case of an even more general and useful
device, which we might call a multipliexor (by analogy with hardware) or a case (by analogy
with software) device, with pins named x, a0, ai, ..., an; s must be an intcger from 0 to n,
and x is connccted to the s’th a pin. Then by connecting a cell (oneof ‘(01 2 ... n))
to the s pin, we get a choice box. A multiplexor is then casily constructed from equality and
gate devices, and so the general choice construction can be simulated as in Figure 5-11. [f all
the gate devices arc changed to equality devices, then the individual choices are additionally
constrained to be distinct. '

oo = F | YO [oG e

Part Two

Engineering

In aequora elucer sol
Effulgens plurimum; A
Quam maxime is tentat ut i
Sit mare plucidum—
Absirdum quidem. guod hoc fit
Ad noctis medium.
—1l.ewis Carroli
Aliciae per Speculum Transitus £
Transkation by Clive Harcourt Carruthers (1966) 4

Hora coctuva per protiniam teremeles
Limugiles teretani el quoque gyrirotant.
Sunt tenuiscopi macrilli: suepeque virci
Edomipali etiam vocibus eruditunt.
—Lewis Carroll
“Tactriferocias™
Aliciae per Speculum Transitus
Translution by Clive Harcourt Carruthers (1966)

HOWILAND Owi: We've got to usc the old savvy, the know-how, the moxie, the mother-wit, "

ars celare artem! k

CHURCHY 1A FEMME: You said it!
Howl.AND Owi: ‘Thank you. ‘

CHurCITY LA FiMME: [Aside] I'm behind him as least one hunderd poor cent. H
SEMINOLE SAM: I'm behind him about seven miles . .. What'd he say? -

Churcny LA Femme: Who knows ... ? 1t was in Latin an’ that is recommendation cnough for
me.
SEMINOLE SAM: Wonder what language the Romans used for the old 14 karat bamboozle?
—Walt Kelly
The Pogo Party

<4,.._A-,

Sic omelet magnolia in tobasco bunion.
—Rube Goldberg

180

With his filibeg fuir filligreed
With finest filiform,
He fleetly footed froo an” fro 3
The figwort in the storm. !
A flaught of borealis and a i
Firkin fine of far
Was fimbricated on the fringe '
Of Frelinghuysen’s hat. Chapter Six b .
—Walt Kelly (1952) :
| Go Pogo 3

Efficiency

H N PREVIOUS CHAPFIRS we have concentrated on developing, in as simple a manner as possible,
the fundumental concepts of a constraint language and means of implementing them. The
development has been linear; at cach step we made incremental improvements, building on pre-
vious work. In this chapter we will undertake a complete revision of the implementation. A few
new “user features” will be added, but the primary emphasis will be on implementation technigues
designed to enhance the cfficiency of the system. '

A summary of the changes and improvements made in the new version to be presented in this

chapter:

o Where possible, arrays will be used internally rather than lists. ('he assumption is that an array
clement can be accessed in constant time by indexing, while accessing a list clement takes time
lincar in the position of the clement in the list.) l

e ‘The pins of a constraint will be considered to constitute a “frame™ or “binding contour™ (these :
words arc meant only to invoke certain mental associations). ‘Ihe names of pins in rules will be
“compiled vut™ and replaced by numeric indices into the frame. "This allows a rule to access a }‘
pin in constant time rather than by using the Tookup opcration on cntry to the rule.

e When there is a reason to awaken a device. in previous versions all the rules of that device . j
would be awakened. Here the rules will be categorized according to pin number, and the !4
awakening circumstances categorized as “added valuc”, “forgotten value™, or "nogood set i
changed”. "This will provide a two-dimensional access to a pre-computed bucket of applicable '

181

r—

182 CUHAPTER SiX EEFFICIENCY

" rules to be awakened. Such a bucket will be potentially much smaller than the total sct of rules
associated with a device.

e ‘Ihe control structure of previous systems was based on explicit 11SP function calls, with the
result that the order in which things were done depended on the order in which procedures of
the implementation invoked others. To reduce this cxplicit dependence, a task queue control
structure will be used. Each task can perform some work, and in the process enqucue more £
tasks. A strong invariant to be enforced is that when a task completes any queued task may
correctly be performed next. Other strong invariants can be established about the state of the |
constraint network data structures as of the time of choosing the next task to perform,]

e Not only rules but also contradictions are treated as tasks to be queuced. This allows us to make
some strong claims about the state of the system when it is contradictory. In particular, we
will be able to show that functions such as disconnect and what will produce meaningful i
results when applied while the network is in a contradictory state. This is casicr to show because
the relevant state is made explicit as 11sP data structures, rather than having part of it implicit in
the internal LISP program state.

I A

_.r
samaad S u

o The introduction of the task queue discipline alfows certain cfficicncy heuristics to be intro-
duced by having multiple qucues with various priorities. Certain kinds of rules can be given
high or low priority, for cxample.

e in the previous versions, a rule could often be run many times because it was awakened for
several different reasons. However, once it has been decided to run a rule for whatever reason,
the computation performed by the rule does not depend (dircctly) on that reason. In this im-
plementation, a bit will be set when a rule is enqueuced for a device, and reset when the rule is
run; a rule is not enqucued if its bit is already sct. In this way between the time a rule is queued

and the time it is run, it will not be cnqueuced redundantly. %
e [n this implementation multiple sources of support for the value of a node will be recorded. ‘ 3
Also, the history of cquatings will be recorded, so that explanations can say which cquatings 1

were involved in a computation. (This could lead eventually to automatic retraction of cquatings
as well as of default values, but that will not be done here.) This is all accomplished by retaining
the cell/repository node structure that has been used so far, bul moving some of the repository .

fields (contents, boundp, rulc) into the cells, so that cach ccll can record its own value. “ ; 1
e At first there were constant cells, and then both constant and default cells. Here we H
will introduce a three-level hicrarchy of valued cells: constant, default, and parameter.

"This will allow certain heuristics to speed up processing of nogood sets.

o Rather than having a varicty of idiosyncratic notations for the various algebraic expressions for
a device, a generat notation will be introduced for writing any arbitrarily rooted sub-tree of a
constraint nctwork.

e Some new uscr facifitics for manipulating the network will be introduced, such a detach and

§6.1 The New hinproved I.anguage 183

‘disequate, 1o be cxplained below.

e ‘The situation where the uscr re-uses a variable name for some other purpose (for example,
saying (create foo adder) somc time after saying (variable foo)) will be dealt with
explicitly and handled cleanly.

6.1. The New Improved Language

‘The uscr interacts with the system by typing a sequence of statements. Each statement can be
one of these:

» (create constraint-name constraint-type) creates a constraint instance. ‘I'hercafter the
global name constraint-name represents that instance. This also implicitly brings into cxistence
a collection of variables (pins of the constraint) named by using the the construct (described
bclpw).

» (variable variable-name) declares a global variable.

» (destroy global-name) causes the name global-name no longer to represent anything. If the
name had most recently been a global variable, then that variable no longer exists, and it is as if
all equatings of that variable had never been made. If the name had most recently represented a
constraint instance, then it is as if that instance had never existed, and as if any cquatings of its
pins had never been made.

» (== thing-1 thing-2) cquates two quantitics.

» (disequate thing-1 thing-2) makes it as if any cquating of thing-1 to thing-2 had ncver
taken place. It doesn’t matter whether there actually had previously been such an equating.

» (detach rhing) makes it as if any cquatings of thing to anything clsc had ncver been made.
However, thing itsclf still cxists, so this is not the same as destroying il. Also, a pin of a
constraint can be detached but not destroyed.

» (disconnect thing) makes it as if any cquatings of thing had never been made, but also
as if the things that thing had been cquated to had all been cquated to cach other. Thus if a
had previously been equated to b, ¢, and d, and d had been cquated to e and f, then after
(disconnect a) the variablc a still cxists, not cquated to anything; and b, ¢, and d arc all
mutually equated; and d is still cquated to e and f, but e and f arc not (directly) equated to
b and c.

» (dissolve thing) makes it as if every thing cquated to thing, directly or indirectly, had
not been cquated to anythung. It is like detaching cverything equated (directly or indirectly) to
thing.

» (retract thing) causcs the source of the valuc in rhing to be forgotten. “This is uscful only
if this sourcc is a default or parameter (scc below); it makes it as if the default or

184 CHAPTER S1X ErHCiENeyY

parameter had been disconnected (more or less).

» (change thing integer) causes the source of the value in thing to be changed o integer.
'This only works if the source is a default or parameter (scc below): it makes it as if the
default or parameter had originally had jnteger as its value.

» (disallow thing-1 thing-2 ... thing-n) indicates that the combination of premise values
on which the specificd things are based is arbitrarily disallowed. 1

» thing makes inquiry as to the value of the thing. The precise nature of the output is not specified

~ here.

» (why thing) giveslocal information as to why thing does or docs not have a value. The precise
naturc of the output is not specified here.

» (why-ultimately rhing) gives glubal information as to why thing docs or docs not have a
valuc. The precise nature of the output is not specified here.

» (what rhing) prints part of the network as an algebraic expression in order to explain why
thing does or docs not have a value. "The precise nature of the output is not specified here.

The following constructs may be used to represent a thing:

o variable-name, the name of a declared global variable. The name of a constraint instance may
no! be used—it is meaningless for this purpose.? A variable may not be referred to until it has
been declarced by a variable statement.

e (constant integer). which cffectively means an anonymous variable with integer as its as-
sociiated value, It is not permitted to retract a constant variable.

e (default integer), which cffectively means an anonymous variable with integer as ils as-
sociated value. A default variable is assumed not to change value very often (see the
change statement above), but this affects only efficiency heuristics, not the computational
behavior of the system. The value may be retracted from & default variable,

e (parameter integer), which effectively means an anonymous variable with integer as its as-
sociated value. A parameter variable is assumed to be likely to change its value frequently
(sce the change statement above). but this affects only cfficiency heuristics, not the computa-
tional behavior of the system. The value may be retracted from a default variable.

e (assume infeger), which is like a parameter variable plus an implicit constraint that
causcs the variable to have the value inreser whenever that is consistently possible. If the value
is retracted, this constraint may cause it to re-appear. 1f there are competing assumptions (for

1. ‘This is uscful for finding more than one solution for a network: after one is found. it 15 disallowed 1o force the
nexd o be found. This strategy 8 reminiscent of how multiple solutions are gencrated in PRO1.OG.

2. Suppose that it were meamngful? Pursuing this thought leads to the possibility of a meta-circular constraint
language. onc in which constramts themselves arc ubjects of the languape which can be construned This is not
considered in this dissertation, but the possibility is discussed in the Conclusions.

AR b

RN RS U VP Y OPu

=Y

§6.1 The New Improved Language 185

cexample, cither of two assumptions may be asscrted but not both at once), the choice of which
to assert is entircly up to the system.

o (oneof integer-list), which is likc a parameter variable plus an implicit constraint that i
causcs the variable to have as its value onc of the integers in inreger-list (a contradiction occurs if |
this is not possible). If one of the integers in the list is retracted, the implicit constraint requires !
another to appear in its place.

e (firstoneof inseger-list), which is like a oneof variable except that the carliest value in 1
the list that can consistently be the value of the variable must actually be the value of the vari-
able. Even if the variable consistently has a value, it may be retracted by the implicit constraint
and a new value (occurring carlier in the list) substituted.

o (the pin-name construint-name), which means the pin pin-name of the constraint constraint-
nanie. ‘The pin-names which may be used by a constraint arc determined by the type of the con-
straint uscd in the create statement which created the constraint. A pin may not be referred
to until its constraint has been declared ina create statement.

The constraint-types provided by the language, with their associated pin names and a short
description of their purpose, are:

adder {a,b,c} c=a-b
multiplier {a,b,c} c=aXhb
maxer {a,b,c} : ¢ = max(a, b).
minner {a, b, c} ¢ = min(a, b).
equality {p,a, b} p & (a = b), where the truth value for p is represented by 0 for
Jalse or 1 for true. 1
gate {p, a, b} p=(a=10). "
lesser {a, b} Contradictionunlcss a << b. ;
lesser! {p, a.b} p < lesser(a, b). i-:
lesser? {p.a, b} p = lesser(a, b). }]
?1esser {a, b} Contradiction unless @ << b. Also, if a is known, thena + 1 is .
considered a good gucess for b; and if b is known, then b — 1 is ;
considered worth trying for a.
?1esser! {p, a, b} p = Nesser(a, b). . ,
?1esser? {p, a.b} p = %Nesser(a, b). L
maxer {a.b, ¢} ¢ = max(a, b). Also, il a is known and b is not, then a is considered B
a good guess for ¢, and similarly if b is known and not a. ?
minner {a,b,c} ¢ = min(a, b). Also, if a is known and b is not, then a is considered ¥
a good gucss for ¢, and similarly if b is known and not a. '7
signum {s, a} 8 = signum(a); that is, s is —1, 0, or 1 according to whether a is

T e g e W

i

186 CHAPTER SIX EiriciENey

ncgative, zero, or positive.

When a contradiction occurs, then the user may be asked to specify which of several
default or parameter valucs to retract. The nature of this interaction is not specified here,

This description is not complete, of coursc, and it spcaks of “values™ and “contradictions”
without explaining them. It is not a complete description of the Tanguage, but only a syntactic
summary with some bricf indications of semantics.

We would like the following propcl"ly to be truc of the constraint system, however: except
for the ordering considerations explicitly expresscd above, the order in which statements are input
to the system makes no difference in the structure of the network constructed. and makes no
difference in the computational results except for the cases where the system is explicitly given free
choice among alternatives (as with competing assume constructs). A slightly different property
is that from any input scquence of statements one can derive, using purcly syntactic techniques,
a new scquence made up only of variable, create, and == statements whuch produces a
network of the same structurce and containing the same computational values (again excepting free
choices of the system). Morcover, all the variable statements can precede all the create state-
ments, which in turn can precede all the == statements. Indeed, within cach group the statcments
can be arbitrarily re-ordered, for example lexicographically.

oy e e

S

6.2. The New Improved Techniques

In this scction we examine the techniques and data structures to be used in the implementa-
tion. Actually, not alf of them arc completely new, but are derived from those used in previous
versions.

6.2.1. Cells Explicitly Record Multiple Support and Equatings

The exact cquating specificd by the user are to be recorded in a recoverable form. To do
this we record cach cquating explicitly (as discussed in §2.2.1 and shown in Figure 2-4 (page 42)a.
Morcover, in order to be able to assign reponsibility for propagation to specified cquatings without
creating circular explanations, a propagation path among cquated cells is maintained. However, :
for speed, this path is computed once when the cells are equated, but then not actually used for L
propagating. (It's not clear that this rcally buys any speed in a sequential implementation such as '
this, but in a parallcl implementation this technique allows for fast broadcasting of a value newly
arrived at a node, without sacrificing the dependency structure of the equatings.) The assumption
behind this technique is that values change more frequently than equatings are donc and undone.

In order that multiple support for values can be recorded. every cell can have its own value,

{
}
13
‘
.
!

§6.2.1 The New Improved Techniques 187

Cells which are pins of constraints can always record a value provided by a rule of the constraint,
for example. ‘To this end the contents, boundp, and rule components are removed from the
repository structure and added to cach cell.

(a)

(b)
(c)

(d)
(e)

(@
(b
(c)
(d

'

.

(e)

{j)
(®)
(h)

)

1)

A repository is thus now a data structure with five components:

id, a unique symbol used mostly for sorting the nodes and for debugging purposes. The Lisp
valuc of the id is the repository.,

cells, alist of cells. A repository plus its associated cells make up a node.

supplier, onc of the cells. There is always a supplier cell, whether or not any cell of the
node has a valve. (This is for purposcs similar to the use of an artificial supplier in the
tree-form-trace function of Table 3-16 (page 98).)

nogoods, a table of buckets of nogood scts, as described in §5.3.

contra, the number of cells in the node which have their own valucs which do not agree with
the valuc claimed by the supplier. Hence if this is non-zero the node is in a contradictory state.

A ccll has ten components:

id, a uniquc symbol used mostly for debugging purposes. The 11SP value of the id is the cell.
repository, the repository of the cell. The cell must be on the repository's cells list.

mark. used for graph-marking algorithms.

owner, which is cither a constraint (in which case the cell is a pin of the constraint), or () ,in
which case this may be a global, constant, default, or parameter ccll.

name. If the owner is a constraint, then this is an integer (not a symbol as before), an index
into the table of pins for the constraint's type. For a global cell, this is the 11 symbol which
is the name of the cell; the value of the 1ISP symbol is the cell. For constant ccells this is the
symbol constant, and for default and parameter cells this is a generated name uscd
for debugging.

state, which describes whether and how the cell has a value (see below).

contents, usually the value (if any) of the cell, but sec below.

rule, the rule by which the valuc was computed if the cell indeed has a value, or () il the cell
has no value. There are three artificial rules called sconstant-rules, sdefault-rules,
and sparameter-rules, uscd to distinguish constant, default. and parameters
cells respectively.

equivs, a list of other cells of the node (imembers of the cells list of this cell's repository)
to which this ccll has been cxplicitly equated by a == statement. Exception: if one says
(== x x) (which is perfectly legal and meaningful, if of doubtful utility), then x will not

appear on its own equivs list.
link, onc of the cells in the equivs list, or () . ‘The link components of the cells of a node
describe a valid propagation pattern within the node along explicit == conncctions.

-

188 CHAPTER SIX FIricnNey

[T T 7

Y Y YY

CELL-27 REP-ID REP-12 b
REP-SUPPLIER |
0 REP-MARK FALSE ‘ i
BAR REP-NOGOODS 0 i

NIL REP-CONTRA 0
@SLAVE REP-CELLS]
0 4 B
FALSE ;A

amlEnCEnCEnCE]
SIEHEA || :

¥

CELL-MARK FALSE 1 FALSE
CELL-LINK - 0

CELL-EQUIVS T T

CGT-aL NooNG

CELL-69 !
A <ADDER-68> + + H i
CELL-ID CELL-43 0 CELL-11]

CELL-REPOSITORY a4 NIL »

CELL-OWNER 0 @SLAVE {GATE-® ’
CELL-NAME FOO 0 2 ‘ 1
CELL-CONTENTS NiL FALSE NIL }I
CELL-STATE @SLAVE @PUPPET !
CELL-RULE 0 > () j
.
i‘
1,

- -

FIGURI&(»'I._— Data Slruclurc' for a Node 3|_ll_\ N_() \’ulﬂ_c. !‘!‘

§6.2.1 The New Improved Techniques 189

y [Y vy

CELL-27 REP-ID REP-12
- REP-SUPPLIER =
0 REP-MARK FALSE
BAR REP-NOGOODS 0
NIL REP-CONTRA 0
@SLAVE REP-CELLS []
0
g FALSE ._<

e

CELL-69 :
-
-) CADDER-68> YY W |
CELL-ID CELL-43 0 CELL-11
CELL-REPOSITORY - 43 [
CELL-OWNER 0 @KING {GATE-9>
CELL-NAME FOO <RULE-73> 2':‘-:: 2
CELL-CONTENTS NiL FALSE 43
CELL-STATE @SLAVE ‘ 0 @FRIEND
CELL-RULE 0 > 9 | <RULE-15>
CELL-MARK FALSE | FALSE
CELL-LINK | = |-,
CELL-EQUIVS » »

A

FIGURE 6-2. Data Structure for a Node with a Confirmed Vilue.] J

AD-A096 556 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/6 9/2 :
THE DEFINITION AND IMPLEMENTATION OF A COMPUTER PROGRAMMING LAN=-~ETC(U) .

AUG 80 6 L STEELE NOOOI'&-GO-C-BSOS
UNCLASSIFIED AI-TR=-595

3o 4
"Sf‘e: s

- :

190 CUAPTER SIX EEFICIENCY

- _ —

Y \ A7

e e

CELL-27 REP-1D REP-12
- REP-SUPPLIER -
0 REP-MARK FALSE i
BAR REP-NOGOODS 0 D
NIL REP-CONTRA 1 Contradiction! ‘
@SLAVE REP-CELLS '] : 3
() })
FALSE K
1 | SO
S— &
CELL-69 '
»-
Y , CADDER-68> YY W
CELL-1D CELL-43) CELL-1
CELL-REPOSITORY - 43
CELL-OWNER 4] @KING <GATE-®> !
CELL-NAME FOO <RULE-73> 2
CELL-CONTENTS NiL FALSE < 65536
CELL-STATE @SLAVE ‘ 0 @REBEL
CELL-RULE 0 > » {RULE-15>
CELL-MARK FALSE] FALSE
CELL-LINK - —n
CELL-EQUIVS ‘ B, r
T — 1
A T |

FIGURE 6-3. Data Structure for o Node in a Contradiclory State.

§6.2.1 The New Improved Techniques 191

The old boundp component of repositories in the old scheme of things has been replaced
by a state component-in cells. "the boundp component had two states: “value™ or “no value”,
The state component has six states, and encodes whether a cell has a value and also documents'
to some extent the cell’s relationship to other cells. The information in the state component is
partly redundant, as it encodes information obtainable from other cell components or components
of other cells in the node. This redundincy sometimes enhances speed. and sometimes just permits
some crror checks. In any case, [believe that recording the six states explicitly aids visualization of
what's going on. The six states have symbolic names: as a point of convention symbolic names here
will begin with “@".

(1) @king. This ccll has a value (in its contents component), and is the supplier for the node. ‘The
rule component of the cell indicates how the value was derived.

(2) @puppet. Thiscell has no value, but was arbitrarily chosen as the supplier for the node be-
cause no other cell of the node has a value cither. (Every node has a supplier, and the supplicr
must be cither a king or a puppet.) ‘The contents and rule componentsare ().

(3) @slave. This cell has no value of its own. It takes on the value (if any) of the node’s supplier;
thus if the node’s supplier is a king, then alt slave cells inherit values. (If the node’s supplicr is a
puppet, then all the other cells must be slaves, and have no values, inherited or otherwise.) ‘The
contents and rule components are ().

(4) efriend. Thiscell is not the node’s supplier, but it has its own value. and it is the same value
as that of the supplier. The contents and rule component are as for a king.

(5) @rebel. This cell is not the node’s supplicr, but it has its own value, and it is not the same
value as that of the supplier (hence the node is in a contradictory state). ‘The contents and rule
componcent are as for a king. (The contra component of a repository is simply the number of
rehel cells in the node. ‘There is no special way to indicate that two rebels have the same value.)

(6) @dupe. This ccll is in cffcct a slave to a rebel. Tt has no value of its own, but agrees with a
rebel rather than with the supplier. (This situation ariscs only as a result of applying == to
two nodes with differing values: one node is chosen arbitrarily to have its king and fricnds
changed to rebels, and its slaves to dupes of the former king. The node can then be queuced for
contradiction processing later. Dupes tend to disappear over time.) ‘The rule component is (),
but the contents componeat is the rebel cell of which this cell is the dupe.

‘Thus kings, fricnds, and rcbels have their own values; puppets, slaves, and dupes do not. Kings and
puppets arc supplicrs; friends and slaves agree with supplicrs; rebels and dupes oppose supplicrs
(nccessarily kings). ‘The cascs of being a slave to a king and a slave to a puppet are purposcly not
distinguished in the state. ‘This mcans that on encountering a slave one must check the supplier; but
then again when a puppet becomes a king it is not necessary to change the states of all cells in the
node. This speeds up the “good™ cascs of propagation without contradiction.

The link components of a node form a spanning tree for the node. The supplier of the node

JR——

—— i e

192 CHAPTER SIX EroicieNey

must have () for its link, and all others must point 1o some other cell of the node. Consider the
graph of explicit == connections. Then the links form a subgraph which is a strict tree. Morcover,
the links indicate a dircction for the edges (if ¢cell x’s link is cell y. then the edge between x and y
is indicated and directed it from x o y). Considering these directions, then the trec is rooted at the
supplicr and from any leaf following cdges in the indicated direction will fead to the supplier. This
property is useful for determining which cquatings were responsible for a cell’s getting a value.
(Howerer, the value tor a dupe or slave can be found guickly just by looking at the contents of
the supplicr of the repository of the cell, rather than having o follow an indcfinite number of link
cdges.)

As an example, Figure 6-1 shows a node of four cells, of which two are global variables and
two arc pins. None have valugs, so onc of the pins has been arbitrarily chosen to be the puppet.
Four equatings were done; the last (between the two variables) being redundant. Note that the link
components converge on the puppet. which has a null link. (Fhe figure does not show the pointers
between the structures and the 1iSP symbols whose values are the structures; instead, the name of
the 11SP syinbol is written.)

Figure 6-2 shows the same nodce after the adder has computed the value 43 for its pin, and
then later the gate also computes the value 43. Because the adder happened o compute its value
first, it was madc king. This cntailed rearranging the links (actually only on¢) to converge on the
king: this is noted in the figurc. When the gate then computed a value, its pin became a friend of
the king. Note that the rule components of the pins now contain rules.

In Figure 6-3 the gate has retracted the value 43 for its pin (presumably because some premise
was changed) and instead asserted the value 65536, ‘This makes the gate’s pin a rebel. ‘The links
need not change. but the state of the gate’s pin changes to @rebel. Note that onc slave’s link
actually points to the rebel; this does not make it a dupe, however

it still inherits the king’s value.
‘The peint is to do the minimum work necessary: there might actually be no equatings allowing a
path from slave to king without going through a rebel, and yet when a rebel appears we would not
want sich slaves to become dupes because that would entail retracting the old value from the new
dupes and their consequences and re-propagating the rebel’s value—and we should be refuctant to
do that because, after afl, it is not clcar whether the rebel's value is “correct™: it may well soon
disappcar.

6.2.2. Constraints Use Arrays Indexed by Pin Number

The previous inplementations of constraint-types, constraints, and rules used lists of things
that took time to access. In particular, when a rule was invoked it was necessary to use lookup to
find the pin-cells: a rule which used all the cells would take time quadratic in the number of pins to
do this. Of coursce, this wasn't so bad since the particular constraint-types provided had only a few

ey T ———— - ‘

i

o

e

§6.22 The New Improved Techniques 193

pins, but we would like not Lo preclude the implementation of constraint-types with many pins,
Here we will use records (defined types) and arrays for collections of things which must be

random-accessed, and lists for things that must be traversed lincarly anyway, We will make rule

be a new data type for representing rules—property lists are nice for fast prototyping, but not
nccessarily for fast exccution.
In the new implementation a constraint-type will be a dat structure with six components:

(a) name, a 115 symbol whioch is the name of the constraint-type. The 11Se value of the symbol is

~ the constraint-type structure.

(b) vars, an wrray of distinet symbols. These are the names of the pins. The array is zero-origin: the
indices for an array of length nare the integers from 0 to n ~— L, inclusive. The position in this
array of a pin-nime is the number for that pin-name; thus we may speak of pin-numbers.

(¢) symbol, a 11sP symbol used to represent constraints of this type in algebraic expressions.
Sometimes, but not atways, this is the same as the name.

(d) added-rules, an array indexed by pin-number. Element 7 is a bucket (a list) of rules having
pin 7 as a trigger. ‘Thus, when pin 77s node receives a new value, exactly these rules should be
awakencd.

(¢) forget-rules. an array indexed by pin-number. Element j is a bucket of rules having pin 5 as an
output pin. When a value is forgotten for pin j, exactly these rules should be awakened.

(N nogood-rules. an array indexed by pin-number. Eleinent 7 is a bucket of ruics having pin j as
an output pin and which might formerly have been prevented from asscrting a value for the
pin because of a nogood set. When the status of a nogood sct involving the node containing pin
7. exactly these rules should be awakened.

A constraint has five componcnts;

(2) name, the global name of the constraint. The 11sp value of the name is the constraint. (The id
component has been climinated, as steps are taken in this implementation to cnsure that the
global name uniquely identifics the constraint.)

(b) ctype, the constraint-type of which this constraint is an instance.

(c) values, an array indexed by pin-number. This array is of the same length as the vars array of the
crype. Element 7 is a cell, pin g of this instance of the constraint-type. The owner of pin 3 of a
constraint is the constraint, and the name of pin j is the integer 3.

(d) info, a slot used by certain constraint types to associate instance-specific information with cach

—

instance.
{¢) queued-rules, an integer, initially 0. 'This is used in conjunction with the id-bit component of

rules (see below).

A rule has six components:

(a) code, a 115P symbol which serves as both the name of the rule structure itself (for debugging

[poen

194 CHAPTER SIX EIrciENey

CTYPE-NAME. GATE j_—[J
CTYPE-VARS | I P J A I 8—1
—{ v v 19}

6'53*@
CTYPE-SYMBOL GATE

; o
G TN T [|
MENER]; NG NGy

CTYPE-ADDED-RULES

CTYPE-FORGET-RULES

JLILAL.

CTYPE-NOGOOD-RULES

A
[T:IZ] 1%
- ——
r o
GATE-RULE-18
]
@NOGOODBEG
2
0 [B -
()
\ YYY Y Y Y
RULE-CODE | GATE-RULE-19 GATE-RULE-17 GATE-RULE-16 GATE-RULE- 15
RULE-CTYPE - o} -
RULE-BITS 0] 0 0 o
RULE-ID-BIT 1 4 8 16
RULE-OUTVAR §) 0 2 1
RULE-TRIGGERS | W

r b
J I] N

FIGURE 6-4. The Constraini-type gate and Its Rules.

purposes) and also the name of the 11SP function which implements the rule (taking advantage
of the fact that most 11SP systems, including Lisp Machine 115k, allow a name to be used
simultancously as a variable name and a function name without contlict).

§6.2.3 The New Inproved Techniques 195

(b)
(c)

crype. the constraint-type with which the rule is associated.
triggers, a list of pin=numbers of the pins which are the triggers for this rule.

(d) outvar, the pin-number of the single pin for which this rule computes a value; or (), indicating

(c)

0

that the rule never computes a value for a pin.

bits. an integer used to encode some flag bits. These flags are integers which are powers of two
(sct) or zero (clear), and birs is the sum of the flag values. (Of course, the name is suggestive
of the fact that a two's-complement representation of the integers is being taken advantage
of)) The twe flags encoded here are called @nogood and @nogoodbeg. Hf cither is set, then
it is possible for a nogood set o prevent the rule from asserting a value: such rules should
appear in buckets of the nogood-rules array of the crype. The @nogoodbeg bit ditfers from
the @nogood bit in that it is very meck, and will not prc - ~¢ a value for & node if the node
has a conflicting value; a simple @nogood rule is willing to assert its value boldly and cause
a contradiction. Therefore @nogoodbeg rules are not invoked unless the output pin has no
value (and so must beg for a value).

id-bir. an integer which is a power of two. All the rules associated with a given constraint-type
have distinct id-bit components. This bit is used to identify whether a rule has been queucd
for processing but not yet processed. When a rule is about to be awakened on a constraint, the
quened-rules component of the constraint is checked: if the rule’s id-bit is set in the queucd-
rules. then the rule need not be queued now because that would be redundant. Otherwise,
the rule/constraint pair is queucd and bit sct in the guecued-rules component of the constraint.
When a rule/constraint pair is dequeued, the bit is reset in the guewed-rules component. ‘This
technique keeps the queucs from being bloated and the system from wastefully running the

same rule many times.

The reader may have noted that previously rules could in principle setc more than one pin, but
here the definition of the ourvar component implics that a rule may sct at most onc pin. ‘This
will make it casier to move some of the rule machinery out of the individuat rules into a common

processing routine.

Iigure 6-4 shows the data structures for the constraint-type gate, whosc new definition is:

(defprim gate (p a b)
((p) (if (or (= p 0) (= p 1)) @dismiss @lose))
((p &nogoodbeg) () (resolve-among ‘(0 1)))
(p (a b) (if (= a b) @dismiss 0))
(b (p a) (if (= p 1) a @dismiss))
(a (p b) (if (= p 1) b @dismiss)))

The first rule has no output pin; the second has output pin p, no input pins, and should have the
@nogoodbeg bit sct. This definition format will be discussed more thoroughly below.

196 CHAPTER StX EiriciENey
6.2.3. Constants Are Considered an Immutable Part of the Wiring

In this implementation it is not permitted o retract a constant. In Chapter Four it was men-
tioned that the ability to retract constants is casy to provide, and so one might as well. Here there
are two counterarguments, one theoretical and one pragmatic—take your pick! (1) One ought to
have a way of wiring essential constants into the network and have them considered part of the
network structure, on a par with == connections, rather than alterable parameters. (2) If constants
arc immutable, they can be shared. We will use a hash table to record generited constant cells so
thatif “(constant 43)is typed many times only one constant cellis generated.

It is still useful o have two kinds of retractable valued cells, and so we call these types
default and parameter cclls. In Chapter FFour, the distinction was drawn to guide a heuristic
about which cclls should be preferred for retraction. Here, the distinction will instead guide a
heuristic about the formation of nogood sets.

6.2.4. A Queune-Based Control Structure Aids Efficiency Heuristics

In this implementation there are seven queuces, a rather arbitrary number, to be sure. ‘They
arc arranged in a simple priority order as an cflicicncy heuristic: but again, | emphasize that a fun-
damental principle of the system is that when the time comes 10 dequcue a task, any tast from any
qucuc may be validly chosen and exccuted: the ordering of the queucs and the ordering within a
queue affects only speed and choices explicitly reserved to the whim of the system by the language.
‘T'he queues, in order from highest to lowest priority, are:

(1) »contra-queues: Outstanding contradictions to be processed. Contradiction entries are of
three kinds. A @node contradiction indicates that a nade is in a contradictory state (has at
least one rebel). A @constraint contradiction indicates that a rule explicitly signalled a
contradiction. A @resolution contradiction indicates that & new nogood set was derived
by resolving old nogood sets. (Note that these situations obtained at the time the entry was
qucucd. By the time the entry is dequeued for pracessing the situation may have already been
solved. ‘This is legitimate and must be accounted for. If the network contains a contradiction,
then there must be an entry for it on the gueue: but not vice versa.)

Contradictions are given highest priority because there is (probably) no point in computing
new values fron inconsistent information. However, see the descriptions of *defer-queues
and spunt-queues below.

(2) »detector-queues: Rules which have no output pin. Such rules are called “detectors”
because ail they can do is deteet contradictions; they compute no values. Fach queug item is a
pair of a rule and a constraint to apply the rule to.

Detector rules are given higher priority than ordinary rules because if on the one hand there is
no contradiction, the rule might as well be run now rather than later; while if on the other hand

P T A S

§6.2.5 The New Improved Techniques 197

there is a contradiction, we would like it to be detected as quickly as possible. (This idea, and
some other ideas about the ordering of the queucs, is taken from [Stallman 1977).)

(3) svanilla-queues: Ordinary (plain vanilla-Ravor) rules.

(4) =nogood-queues: Rulecs with the @nogood or @nogoodbeg hit set. Such rules are likely
o make assumptions, and so are accorded lower priority than vasilla rules, which are likely to
be certain of their calculations,

(5) sdefer-queues: Contradictions which have been deferred until rules have been processed.

When a contradiction occurs, the user has the option of choosing a premise to retract, or

requesting that the contradicuon processing be “deferred™ (postponed until rule computations

have been done) or “punted ™ (postponed indefinitely).

The reason for the deferral mechanism s that sometimes it is necessary (¢ make two or more

changes to the system at once-—for example, to alter several parameters. The alterations

together make the network consistent, but if done sequentially leamve the network temporarily
inconsistent, {t may be desirable to postpone contradictions until all the changes have been
made, whercupon many will be discovered to be “false alarms™.

srebel-queues: Rules some of whose triggers were rebels or dupes at the time of queuing,

Fntries are triples of rule, constraint, and the reason for awakening (needed for re-queuing the

(6

~——

rule into one of the higher-priority rule gueucs).
‘The rationale here is that there is no point in computing values from contradictory information.
When all outstanding contradictions have been processed (from cither scontra-queues
or =defer-queues). then there can be no more rebels. and rules are moved from
srebel-queue= to the other rule queucs.

{7) spunt-queues: Contradictions which have been postponed indefinitely. The user may be
asked occasionally whether to process these, but they are not processed without explicit ap-
proval. (Of course, if they are not processed then the netvark may renain in a contradictory

state.)

6.2.5. Generalized Algebraic Notation Can Fxpress Any Network

The use of special notations for the different “points of view™ of a constraint arc chiminated.
Instead of having 4 to represent addition and *—" 1o express its inverse: instead of using “log™
and the radical sign to express inverses of exponentiation; instead of having to invent silly names
like “arcmax™, wc will use a single symbol for cach constraint type, and represent inverses by a
special device.

A constraint can be notated by writing down the name of its type and what its pins arc con-

neeted to. Rather than writing these picees of information separately, in algebraic notations we
usc a positional convention, which is that the pins are ordered and assigned to positions spatially

Ea o

e e e U,

AL

i

Bt S —

198 CHAPIER SIX EFICIENCY

relative to the position of the name of the constraint type. In FORTRAN, for example, the position
to the left and right of a "+ arc assigned 1o two pins; writing a variable in such a position means
that the variables are connected to the pins: x+y means that x is connccted to the first pin of the
mstance of + and y W the second pin. (Now in FORTRAN the + device can only compute in one
direction~—it is not a constraint—but the use of the word “pins™ is meant to be suggestive.) In 11Sp
the name is preceded by (7 and successive positions o the right are connected to successive pins,
with the last followed by a)™, In both languages another positional convention holds that the
expression itself represents one pin: wherever that expression is written, the extra pin 1s connected
to the pin for that location. In FORTRAN one writes axb+c: paring rules specify that this is
cquivalentto (as=b)+c. Now the two input pins of * arc connected to two variables a and b, and
the result pin to the first input of +, because the » expression was written in the position for the
first input pin of +. (All of these obscrvations appear in [Steete 1979))

tHere we will allow a constraint 1o be notated in a manner similar to a ISP expression.
However, we will not distinguish onc pin as the “output”™ pin, the one to be connected to the
position where the expression is written. Instead, we have a device to specify which pin serves
that purpose. We notate a constraint as the name of the constraint-type followed by cxpressions to
connect to alf the pins. However, one expression can be replaced by the svmbol %, which indicates
that that pin is the one that goes “out the top™ to connect to the containing cxpression’s operator.

For example, if the pins of the + constraint are called ¢, a, and b in that order, then we can
writey —zas (+ y % x) oras (+ y x %). Inthe firstcase, y is connected to the ¢ pin, x
to the b pin, and the a pin represents the result, ‘The expression @ — arcmaxg{c 4 d/e} can be
writtcnas (+ a % (max b % (+ %4 c (= d % e)))).

Neote that this notational convention makes the order of the pin-names in a defprim decla-
ration important.

As a convenient convention, if the first pin in an expression is to be a %, then the % inay be
elided. Therefore the expression (+ % x y) may he written as simply (+ x y). This allows
non-inverse forms of familar algebraic opcrators to be written in their usual 11SP form.?

6.2.6. 'The Size of Nogood Sets Can be Heuristically Reduced

When a contradiction is discovered, cither because some rule of a constraint detected it or
because two distinct values collided at a node, then contradiction processing locates the premiscs

1 Other authors have sometimes done somcthing similar 1o this For example. it aflows a functional notation for
relattons in predicate logic. and one for example defines 1H(S{a]. T(b. ¢f) 1o be an abbreviation for e Jy (Sa,) A
T(h,e, y) AR(r. y)), where 12,5, and Y are relations. 1 hane purposcly allowed clision of the first argument rather
than the last. Suppose the relation subset(a,) means that a is a subsct of b If the last argument is chided, then
subset(a) mcans “that r of which a i a subset”, tather than “a subset of a7, which i the ncanmg if the first
argoment is clided. Similarly, one would like lessthan(r) to mean “somcthing less than £, not “something which r

is less than™.

.

———— ———— ..

§6.26 The New Improved Techniques 199

Q
w A0
v
X
PO
Do D1 D2 Y VA
P1
D3 D4 D5 Cco
FIGURE 6-5. Summarizing Default Cells i the Network.,

of the conflict. These premises collectively form a nogood sct, as discussed in §5.2.1. Nogood sets
can be very large and require a great deal of time to search when checking assumptions. Here three
technigues are outlined for reducing the size of nogood sets, all based on distinctions among valued
cells.

The first technique is simply to exclude constant cclls from nogood sets. ‘They are now (o
be regarded as a fixed part of the network structure, as permanent as == conncections, and never to
be automatically retracted (indeed, the only way to “retract’™ a constant now is to disconnect it), In
the examiple of the four queens problem in 5.4.2, nogood scts were often formed containing one or
two assumptions and half a dozen constants that were regarded as fixed. Every iime a nogood set
was checked to sce whether it excluded a value, cach constant of the set would be checked to ensure
that it was still constant! Excluding constants from the nogood scts climinates this overhead.

‘T'he second technique is to order the elements of the nogood set according to the expected
frequency of change. Parameter cells by definition are assumed to be more variable than default
cells, so if parameter cells are put at the front of nogood sets where they will be checked first, we
might expect to be able to tenninate check loops more quickly.

The third technique involves using the network to summarize a collection of default cells
(which, again, arc assumed not to change frequently). Consider the schematic diagram in Figure 6-
5. The three values V. W, and P2 caused a contradiction at Q. The value V was computed from
DO, D1, and D2; W from PO and Y; and so on. The nodes Pj and Dj represent parameters and
defaults, respectively; €0 is a constant, and A0 is an assumption. The leaves of the tree are the

premises of the contradiction at Q .

200 CHAPTLER SIX EreicieNey

Now in the previous versions of the constraint system, the leaves would all go into the nogood
set. By the first technique listed above, we now omit the constant €O from the nogood set.
Supposc, however, that we were to put nodes other than premises into n';\good sets? ‘This is per-
fectly meaningful. FFor the situation of Figare 6-5, we might make up a nogood set containing V., W,
and AO. This would record the fact that the values at those three nodes are contradictory. However,
this is not very uscful--the constraint combining them at Q determined that in one step anyway.
and the purposc of nogood sets is o summarize global, not local. information. Another possible
nogood set would be V. P0. P1, X, Z, and AQ.

The question is, which nogood sets are useful? In this implementation. nogood scts are
checked only by rules which produce assumptions (i.c.. &nogood and &nogoodbeg rules). and
by the change statement.* Therefore. nogood sets must contain assumptions or cells likely 0
be changed (which by definition are parameters but not defaults) to be useful (this is why in pre-
vious versions process-contradiction did not record nogood sets unless an assumption was
involved), and then for speed ought to contain as few other cells as possible.

There are many ways a nogood set (or many nogood sets) could be chosen for a contradiction.
‘The heuristic inethod used here is that if any cell in the dependency wee is supported only by
default cells (and constant cells, but they don’t count anyway), then that cell may be used in the
nogood setin licu of the default cells, provided there are more than onc (that is, the summarization
15 used ouly if it strictly decreases the size of the nogood set). Assumptions and parameter cells
must be explicitly included in nogood sets. Thus for Figure 6-5 the nogood set actually chosen
would be V (summarizing 09, D1, and D2). PO, P1, Y (summarizing D3and D4), and D5 (which
could be summarized by Z butis not because it wouldn't decrease the size of the nogood set).

6.2.7. Statistics Counters Mcasure Performance

This version of the constraint system is instrumented with a system of statistics counters (a
generally useful package of 11SP functions in its own right). This will allow us to count such cvents
as number of rules queued, number of cells generated, and so on.

4 In principle. any computed result could be checked against cxisting nogood sets in process-setc. and perhaps
this would be a good thing: but | deemed this an unnccessary compheation with unclear benelits.

.

§6.3 The New Dnproved haplementation 201
iy Values of the SIATL component of a CHLL. }
(defconst @king ()list '@king)) vhas value, is supplier
(defconst @puppet (list ’'@puppet)) .o value, is supplier
(defconst @friend (11st ’@friend)) ;has value, bhelieves supplier
{(defconst @slave (list ‘@slave)) .no value, believes supplier
(defconst @rebel (list ‘@rebel)) .has value. opposes supplier
(defconst @dupe (1list ‘Q@dupe)) .no value, belicves a rebel

Bits which can be set in the RUIE-BITS component of a RULE.
(defconst @rule-nogood 1)
(defconst @rule-nogoodbeg 2)

.. Values returned by the CODE function of a RUIE.
(defconst @lose (list 'RBlose)) ;contradiction detected
(defconst @dismiss (list ‘@dismiss)) ‘no value computed

Special flags returned by CHOOSE-CULPRLT
{(defconst @defer (1ist ‘@defer)) ccontradiction should be deferred
(defconst @punt (list 'Gpunt}) .conlradiction should be punted

Reasons fTor enqueuing a RUIE.

(defconst Qadded (list ‘@added)) ;a trigger received a new value
{(defconst @forget (list ‘@forget)) :the outvar is begying for a value
(defconst @nogood (1ist ‘@nogood)) ;a4 nogood for the outvar was flushed

Reasons for contradictions in entries of «CONIRA-QUIUEs and friends.

(defconst @node (list ’'@node)) :the node contains a rebel
(defconst @constraint (list 'Gconstraint)) ;a constraint rule detected it
(defconst @resolution (list '@resolution)) ;resolution on nogood sets

Fanii6-1. Detininons of Ssmbolic Constants.

6.3. The New Improved Implementation

In this section the entire source code for the new system is presented, complete in itsclf.

6.3.1. Symbolic Constants Provide Names for Intermal Marker Values

Symbaols declared by the defconst constructare ssmbolic constants. ‘They are implemented
as globab rise variables, but their vidues are supposed not to change. As a matter ol programming
convention, symbolic constants of the constraint system have names beginning with "8, Some
of the constants are special numeric values, but most are just 11SP objects whose nature doesn’t
particulinly matter as long as they are recognizahly distinet from all other objects. For this purpose
a freshly consed Dist of the name of the constant is used. This makes the constant recognizable

when it is printed: the fresh consing ensures unigueness, Definitions of symbaolic constants used

.}

202 CHAPTER SIX EFEICIENCY

in the constraint system appear in ‘Tabie 6-1. The names @k ing, @puppet, @friend, @slave, "
@rebel, and @dupe arc used to mark the state of a cell, for instance. ‘these constants are thus
cffectively the elements of PASCAL -style enumecrated data types:

§6.3.2 The New Improved Implementation 203

(defvar +all-statistics-counterss ‘())

(defmacro statistics-counter {name description)
(let ((varname (symbolconc “¢" name "-STATISTICS-COUNTERs")))
s(progn ‘compile
(or (assq ‘,varname sall-statistics-counterss)
(push /(,varname ,description) sall-statistics-counterss))
(defvar ,varname 0))))

(defmacro statistic (name)
«(increment ,{symbolconc "s" name "-STATISTICS-COUNTERe"}))

(defun stats ()
(dolist (x (reverse sall-stalistics-counterss))
(format t "~%:77D = “A" (symeval {(car x)) (cadr x)}))

(defun reset-stats ()
(dolist (x =all-statistics-counterss) (set (car x) 0)))

TABLE6-2. Statistics Counter Mechanism,

6.3.2. Statistics Counters Make It Fasy to Instrument Code
Table 6-2 defines a simple statistics-gathering mechanism. The declaration

(statistics-counter foo "Globbitzes frobbotzed while nurbling the scrol”)

creates a statistics counter named foo. The string is a description of the meaning of the counter.
‘I'his has the effect of defining a global variable named «foo-statistics-counters, initializ-
ing it to zcro, and adding it to a list of alt declared statistics counters. One can insert into a picce of
code the statement

(statistic foo)

which will cause the count in counter foo to be incremented. The function stats will print all
the statistics, one per line, in the format:

Globbitzes frobbotzed while nurbling the scrol
Queuved rules with no output pin

: 2960
; 45613

The function reset-stats resets all the counters to zero.
In the code to follow there will be many call on the statistic macro. like calls to
ctrace and require- fype, they can he ignored for purposes of understanding the computation,

204 CHAPTER SIX FEHICIENCY

(deftype constraint-type
(ctype-name clype-vars ctype-added-rules ctype-forget-rules
ctype-nogood-rules clype-symbol)
(format stream "<Constraint-type "S>" (ctype-name constraint-type)))

(deftype constraint (con-name con-ctype con-values con-info (con-queued-rules 0})
(format stream "<~S:7S>"
{con-name constraint) (ctype-name (con-ctype constraint))))

(deftype rule ((rule-triggers ‘()) (rule-outvar ()) rule-code
(rule-bits 0) (rule-ctype ()) rule-id-bit)
(format stream
" TAST T U[(TSTR[T &NOGOODT 1T Ys 8NOGOODBIGT Y)T TSeT2s7 T}
“S(T{TSTr Y)
{(rule-outvar rule)
(zerop (rule-bits rule))
(and (rule-ctype rule)
(rule-outvar rule)
{aref (ctype-vars (rule-clype rule)) {(rule-outvar rule)))
(bit-test @rule-nogood (rule-bits rule))
(bit-test @rule-nogoodbeg (rule-bits rule))
(rule-code rule)
{and (rule-ctype rule)
{(fortist (tr (rute-triggers rule))
(aref (ciype-vars (rule-ctype rule)) tr)))))

TABLEG-3. Data Structures for Constraint-types. Constramis, and Rules,

——— e)

6.3.3. Rules Are Data Structures and Catalogued in Arrays

Table 6-3 shows the definitions of the data structures described in §6.2.2. An additional feature
of interest is the new printing formats for constraints and rules. A constraint is now uniquely
named by a global variables, and so its id is not printed. Instead it just prints as the name and its
type:

(create foo adder)
<F0O0:ADDER>

‘The format for printing rules is intended to show the functional dependence of the rule by
using the outvar and trigger information. The five rules for gate which were defined in §6.2.2
printin this way:

<A«GATE-RULE-15(P,B)>
CBGATE-RULE-16(P,A)>
(P~GATE-RULE-17(A,B)>

<(P &NOGOODBEG)+GATE-RULE-18()>
<GATE-RULE-19(P)>

R Rt

§6.3.3 The New Improved Implementation 205

Rules 15, 16, and 17 are vanilla-flavor rules; rule 18 has the @nogoodbeg bit sct and has no
triggers; and rule 19 has no output pin, and so is a detector rule.

oy —r
(R N WO

s mm ko

-

206 CHAPTER SIX EERICIENCY

(deftype repository ((rep-cells ()) (rep-supplier ()) rep-id
. (rep-nogoods ‘()) (rep-contra 0))
(format stream “<Repository™@(for ~{~S™t,”} "]>"
{cell-ids repository)))

(defimacro node-cells (cell) ‘(rep-cells (cell-repository ,cell)))
(defmacro node-supplier (cell) ‘(rep-supplier (cell-repository ,cell)))
(defimacro node-mark (cell) «(cell-mark (node-supplier ,cell)))
(defmacro node-nogoods (cell) *(rep-nogoods (cell-repository ,cell)))
(defmacro node-contra (cell) ¢(rep-contra (cell-repository ,cell}))

(deftype cell (cell-id cell-repository cell-owner cell-name
(cell-contents ()) (cel)-state @lose) (cell-rule ())
(cell-equivs 7()) (cell-link ()) (cell-mark ()))
(progn (format stream "<™S (7S™@[of ~S™])"
(cell-id cell)
(if (cell-owner cell)
(aref (ctype-vars (con-ctype (cell-owner cell)))
(cell-name cell))
(cell-name cell))
(and (cell-owner cell) (con-name (cell-owner cell))))
(select (cell-state cell)
((@puppet) (format stream " PUPPET>"))
((@slave) (format stream " SLAVE™@[~S~]>"
(select (cell-state (node-supplier cell))
((@king) (node-value cell))
((@puppet) ())
(otherwise
(list ’bad-supplier

((@king) (format stream "~@[~+ [OPPOSED]™] KING ~S>"
(plusp (node-contra cell))
(cell-value cell)))
((@friend) (format stream "~@[~s [OPPOSED]™] FRIEND ~S>*
(plusp (node-contra cell))
(cell-value cell)))
((@rebel) (format stream " REBEL ~S AGAINST ~S>*
(cell-value cell) -
(if (eq (cell-state (node-supplier cell}) @king)
(node-value cell)
(list ‘bad-supplier
(cell-state (node-supplier cell))))))
((Q@dupe) (format stream " DUPE ~S AGAINST ~S>"
(cell-value cetll)
(if (eq (cell-state (node-supplier cell)) @king)
(node-value cell)
(Vist ’bad-supplier
(cell-state (node-supplier cell))))))
(otherwise (format stream " BAD STATE ~S>" (cell-state cell))))))
(defun cell-ids (rep)
(require-repository rep)
(forlist (x (rep-cells rep)) (cell-id x)))

TABLE 6-4. Data Structures for Reposituries and Cells,

(cell-state (node-supplier cell)))))))

et o i L

i a e i e .

"l|llllIlll"lll"""""""""""""'!"“"""l'llllllllllllllll"""‘“"'f""““"

§6.34 The New Improved Implementation 207

6.3.4. Cells Have Ficlds That Were Formerly in Repositories

The definitions for the new repository and cell dat structures described in §6.2.1 are shown
in ‘Fable 6-4. As before, macros named node-cells, node-supplier. node-nogoods. and
node-contra arc provided for accessing ficlds of a repository given a cell. Sometimes a graph-
macking algorithm wants to mark a node and not just an individual cell, but we have moved the |]
mark component from repositories to cells: the sofution is to define node-mark to access the t
mark component of the node’s supplier. (Fhis is only one reason why a node always has a supplier.)

The printing format for cells has been updated to be more informative. Consider for example 4
this interaction. After these statements: |

(create foo gate)
<FOO:GATE>
(progn (variable x)

== x (the p foo))

(== (the a foo) (parameter 5)) E}
== (the b foo) (parameter 5)) L
(variable y) fy
(== y (default 6)) » K.
(== y (the b foo))) : {q
(yes. progn is not part of the language, but 1 cheated for concisencss), foo is a gate: its p is
connected to x; its a has the parametric value 5; and its b has the parametric value 5 and is also {
conncected to y which had the default value 6. This causes a contradiction of course, within which
we can examine the cells: :
::: These are the premises that seem to be at fault:
H <CELL-78 (DEFAULT-76) REBEL 6 AGAINST 5> ==Y,
H <CELL-72 (PARAMETER-70) [OPPOSED] KING 5> ==Y,
i:: Choose one of these to retract and RETURN it.
X
<CELL-61 (X) SLAVE>
(the p foo)
<CELL-55 (P of FOO) PUPPET)> ,
(the a foo)]
<CELL-57 (A of F00) SLAVE 5>
(the b foo)
(CELL-59 (B of F00) SLAVE 5>
y

<CELL-75 (Y) DUPE 6 AGAINST 5>
(node-supplier (the b foo))

CCELL-72 (PARAMETER-70) [OPPOSED] KING 5>
(cell-contents y)

208 CUAPTER SIX EIFICIENCY
<CELL-78 (DEFAULT-76) REBEL 6 AGAINST 5>

{Note the use in the 11SP code of the special form select, which is like the case statement
of algebraic languages. Note too that an otherwise clause has been provided, to print cells
which somchow have a bad state component. Similarly, the code is tolerant of a supplicr other than
a king or puppet (this can occur when printing a trace message). 'The printer is a debugging tool,
and debugging tools must be fairly robust, tolerating crrors in the data structures?)

dad o

= v~

209

{defun node-boundp (cell)
(require-cell cell)
(select (cell-state (node-supplier cell))
((@king) t)
((@puppet) ())
(otherwise (lose “"The supplier ~S has a bad state." (node-supplier cell)})))

(defun node-value (cell)
(require-cell cell)
(let ((s (node-supplier cell}))
(or (eq (cell-state s) @king)
(lose "Supplier ™S for cell 7S isn’t a @KING." s cell))
(cell-contents s}))

(defun cell-value (cell)
{require-cell cell)
(select! (cell-state call)
({@slave) (node-value cell))
{(@king @friend @rebel) (call-contents cell))
((@puppet) (lose "Can’'t take value of the @PUPPET 7S." cell))
((8dupe)
{(let ((c (cell-contents cell)))
{(require-cell c)
{(or (and (eq (cell-repository cell) (cell-repository c))
(eq (cell-state c) @rebel))
{lose "Bad @DUPL indirection from S to 7S." cell c¢))
{cell-contents c)))))

(defun node-rule (cell)
(require-cell cell)
(let ((s (node-supplier cell}})
(or (eq (cell-state s) @king)
(lose "Supplier ™S for cell 7S isn’t a @KING." s cell))
(cell-rule s)))

(defun cell-true-supplier (cell)
(require-cell cell)
(select! (cell-state cell)
((Bking @rebel @friend Qpuppet) cell)
((@slave) (node-supplier cell))
((@dupe) (cell-contents cell))})

TasLE6-S. Functions for Accessing Values of Cells and Nodus.

i

[P S SV

210 CHAPTER SIX EIFICIENCY

6.3.5. The Value of a Cell My Differ from the Value of Its Node g

Because the node data structure can now tolerate contradictions in the form of rebel cells, the
value of a cell s not necessartly that of the node’s supplier. Table 6-5 provides some functions
which are uscful for manipulating values of cells and nodes. Those whose names begin with !
node - deal with the supplier of the given cell’s node: those whose names begin with ce11- dcal
with the given cell itself,

The function node-boundp is a predicate true iff the node has a value: it checks the sup- i
plicr (and in the process ensures that it is a king or puppet). (IUis not necessary to have a separate

function ce11-boundp. Ifa cellis a king or puppct, then it is the supplicr, and so is bound iff the
node is. Fit is a friend, rebel, or dupe, then it is bound: but then there must be a king, and again
is the cell bound iff the node is. Finally, a slave by definition has a value iff the node (the supplier)
docs.)

If the node has a value, then node-value will feteh the value (the contents component of
the suplicr cell, which must be a king). Similarly, cel1-value will get the value of the given cell,
which is the cell’s own value if it is a king, friend. or rebel; the supplicr’s value, for a slave; or the

: believed-in rebel’s value, for a dupe. (A puppet can never have a value.) The function node-rule
gets the rule used to compute the node’s value. (The function (actually macro) cell-rule ob-
viously accesses the cell's rule component, as specified in the definition of the data type ce11. The
concept of fetching the rule that computed the cell’s value is reasonable, and also ought o be called
cell-rule by these conventions, but it turned out not to be needed, and so the naming difficulty
was avoided. One can instcad take the cel1-rule ofthe cell-true-supplier ofthecell)

(The ISP special form select! is similar t0 select but automatically supplics an
otherwise clausc which signals a correctable LISP error if no other clause is selected. In contrast,
select nercly returns () if no clause 1s sclected, by analogy with cond. Using select!
makes debugging casier without having to provide cxplicit error checking whencever a selection
statement is written.)

The function cell-true-supptier returns the supplier which the given cell “believes”™.
Kings, rebels, friends, and puppets believe in themsclves (puppets have no valucs, but they are still : |
supplicrs): slaves belicve in the node’s supplicr; and dupes believe in some rebel they point to.]

|

§6.3.6 The New Improved Implementation

211

(statistics-counler gen-repository "Repositories generated")

(defun gen-repository ()
(statistic gen-repository)
(let ((r (make-repository))

(n (gen-name ’‘rep)))
(setf (rep-id r) n)
(set n r)

r))

(defun node-lessp (x y)
(require-cell x)
(require-cell y)
(alphalessp (rep-id (cell-repository x)) (rep-id (cell-repository y})))

(statistics-counter gen-cell "Cells generated”)

(defun gen-cell (name &optional (owner () ownerp))
(and ownerp (require-constraint owner))
(if ownerp (require-integer name) (require-symbol name))
(statistic gen-cell)
(tet ((c (make-cell))
(r (gen-repository))
(n (gen-name ’‘cell)))
(setf (cell-id c) n)
(set n c)
(setf (cell-owner c) owner)
(setf (cell-name c) name)
(setf {cell-repository c) r)
(push ¢ (rep-cells r))
(setf (cell-state c) Qpuppet)
(setf (rep-supplier r) c)
c))

TABLE6-6. Generation of Repositories and Cells.

.83.6. A Newly Generated Cell is Its Own Puppet

The code for generating new repositories and cells in in ‘Table 6-6. Note the two statistics

counters for counting the number of repositories and cells generated.

If a new cell has no owner, then its name imust be a symbol; but if it has an owner, its name
must be an integer (a pin number). ‘The initial state of any new ccll is @puppet. and it becomes

the supplier of its onc-cell node.

212 CHAPIER SiX ErcieEney

(deftype hashtable ((hashtable-population 0) hashtable-array
(hashtable-probes 0) (hashtable-lookups 0)
hashtable-key-extractor hashtable-load-factor-1imit)

(format stream "<Hashtable ™S size="D population="D load factor="$ avg probes="S$>"

(hashtable-key-extractor hashtable)
(array-tength (hashtable-array hashtable))
(hashtable-population hashtable)
(// (float (hashtable-population hashtable))

(array-length {(hashtable-array hashtable)))
(if (zerop (hashtable-lookups hashtable)) ’7?

(+ (/7 (float (hashtable-probes hashtable))

(hashtable-lookups hashtable}))
1))))

(defun gen-hashtable (kex &optional (sice 63.) (load-factor-limit 0.75))
(let ((h (make-hashtable)))
(setf (hasitable-array h) (array-n (- (1t 2 (haulong size)) 1)))
(setf (hashtable-key-extractor h) kex)
(setf (hashtable-load-factor-limilL h) load-factor-limit)

h))

TABLE 6-7. Hush Table Definition e Generation. |

6.3.7. Hash Tables Store and Retrieve Objects Indexed by Given Keys

We will have an application for hash tables in a moment. and so we pause here to define an
implementation. "This scction is not a gencral treatise on hashing, and the code presented here is
not even a particularly good (or particularly bad) hashing technique. FFor a more general treatment,
see [Knuth 1973). ‘Table 6-7 shows the definition for the dita type hashtable, which has these
components:

(a) array, an array used to store hashed records. A record may be any object other than (1), which
is used to indicate an unused array position.

(b) key-extractor, which is a function which when given a record will extract the record’s key,
which must he an intcger. (While keys must be integers, they may be very Jurge integers, and so
simply using the key itself as the array index ts not a practical technique.)

(¢) population, the number of occupied positions in the array. This is present purely for speed: it
could be computed by scanning the array.

(d) load-fuactor-hmit. ‘The Joad factor of the hash array is the population divided by the total array
size, i.c., the pereentage of used posttions. 'The Joad-fuctor-linit is o it on this percentage;
when the population becor ies too large, then the array must be expanded. (Analyses such
as those in [Knuth 1973] indicate that the expected time o access a hash array is roughly a

function of the load factor. Henee keeping the load factor Tow will improve the access time.)

"

§6.3.7 The New Improved Implemeniation 213

(defun hash-lookup (n hashtable)
(prog ret ()
(increment (hashtable-lookups hashtable))
{(let ((a (hashtable-array hashtable))
(kex (hashtable-key-extractor hashtable)))
(let ((s (array-length a)))
(do ({probe (mod n s) (mod (+ probe 1) s)))
((null (aref a probe))
(return-from ret () probe))
(increment (hashtable-probes hashtable))
(and (equal (funcatil kex (aref a probe)) n)
(return-from ret (aref a probe) prohe)})))))

(defun hash-install (k obj hashtable)
(let ((a (hashtable-array hashtable))
(kex (hashtable-key-extractor hashtable)))
(or (null (aref a k)) (lose ""D slot already filtled in 7S." k hashtable))
(aset obj a k)
{(increment (hashiable-population hashtable))
(let ((s (array-length a)))
(and (> (hashtable-population hashtable)
{(* s (hashtable-load-factor-limit hashtable)))
(let ((newarray (array-n (+ (s s 2) 1))}))
(setf (hashtabie-array hashtable) newarray)
(dotimes (j s)
(or (null (aref a j))
(multiple-value-bind (item slot)
(hash-lookup (funcall kex (aref a j)) hashtable)
(and item (lose "Weird hashtable bug: item ™S in 7S.”
item hashtable))
(aset (aref a j) newarray slot)))))))

obj))

Tastr 6-8. Hash Table Tookup and Install Opcrations.

(c) lookups. the number of times the hashtable has been accessed. This is a statistics counter, but is
not done via the standard statistics counter mechanism so that it will be per-hashtable.

() probes, another statistics counter, measuring the number of unsuccessful accesses to the array.
‘This plus lookups, all divided by lookups, is the average number of accesses per lookup (a
quantity onc secks to minimize in the interests of speed).

The function gen-hashtable takes a key-extractor function and creates a hashtable
around it. The initial size defaults to 63, and the load factor to 0.75. ‘The size is constrained to
be one less than a power of two. (The 1ISP function haulong. applicd to an integer x, computes
[log,(|z] +)] (itis the “length of z in bits™); thus

ghaulong(z) __ |

is some n which is onc less than a power of two and not Iess than 2. This is a not unreasonable
length for a hashtable, using key (mod n) as the hashing function. 'Ihe function array-n takes

an integer and constructs a zero-origin array of that length.)

-

214 CUAPIER SIX ELTICHINCY

The function hash-lookup (lable 6-8) takes a key and a hashtable and trics o find a
record with that key in the table. It returns two values. e first is the record if one was found. or
() if none was found. The sccond is the index into the hash array where the record was found or
the scarch terminated. (This returning of two values is donce via the Lisp Machine 11SP multiple-
value mechanism. If several arguments are given to the return function or one of its variants,
then all the arguments are collectively returned from the enclosing prog. I the prog’s function
was invoked via a normal tunction call, then the first value returned is the functional value, and the

rest are discarded. However, special forms such as multiple-value-bind can be used to get

the other vatues. This technique avoids consing up and picking apart a list of results; internally afl ;l

the returned values arc passed “on the stack™.) [
The function hash-install takes an index supplicd by hash~-lookup. a record (which ‘

should have as key that key used to obtain the index). and a hashtable. [t installs the record in 3

the table, and if the load factor has exceeded the limit it creates a new hash array, installs it in the

hastable data structure, and copies the contents of the old array into the new one by re-hashing

them.

§6.3.8 The New lmproved Implementution 215

(progn ‘compile
(defglobal econstant-rules (make-rule))
(setf (rule-code sconstant-rules) ‘constant-code)
(defun constant-code (smes) (lose "Constant ruie invoked on ~5." smee)))}

{(progn ‘compile
(defglobal sdefault-rules {make-rule))
(setf (rule-code sdefault-rules) ’‘default-code)
(defun default-code (emes) (lose "Default rule invoked on "S." smes)))

(progn ‘compile
(defglobal sparameter-rules (make-rule))
(setf (rule-code sparameter-rules) ’parameter-code)
(defun parameter-code (*mes) (lose “Parameter rule invoked on “S." smes)))

(defun globalp (cell)
(require-cell cell)
(and (null (cell-owner cell)) {null (cell-rule cell))))

TABLEO6-9. Dummy Rules for Constunt. Default. and Parameter Cells.

6.3.8. Constant, Default, and Parameter Cells Have Dummy Rules

Valued cells (those created by the constant, default, and parameter constructs) are
distinguished by the presence of distinguished dummy rules. which are the values of the variables
sconstant-rules, =default-rules, and »parameter~rules, dcfined in lable 6-9. For
uniformity. every cell which has its own value (whether a valued cell or a pin) must have a rule.
However, it is an crror ever to invoke the rule of a valued cell. To guard against this possibility (as
a matter of defensive programming), these dummy rules ase provided wioth code components that
will signal a meaningful crror.

Cells for global variables, on the other hand, never have values of their own; they can be
distinguished by this fact. Hence the predicate globalp. true iff its argument (a cell) is a global
cell, merely checks that the cell has no owner and no rule.

The function initialized-cell creates a valuced cell of specified type (here specified by
which dummy rulc is provided). A valued cell is initially its own king. Defauit and parameter cells
are gencrated in similar ways: a name is generated, an initialized cell of that name generated with
the appropriate dummy rule, the name given the cell as its value, and the cell returned.

For constants, however, a hashtable is used. ‘The global 1ISP variable sconstantss is a
hashtable used for hashing all constant cells. The function constant-value serves as the key-
extractor. To gencrate a constant of given value, the valuc is used as the lookup key for the hash-
uble (note the use of multiple-value-bind to get both the cell, if any, and the hash index).
If a cell with that valuce is alrcady in the table, it is returned; thus constants are “shared™ among

————

-

aindd,

216 Cnaprier Six ELEICIENCY

- 7

(statistics-counter init-cel) "Initialized cells™)

(defun initialized-cell {vaiuve name rule)
(require-integer valua)
(let ((cell (gen-celi name)))
(setf (cell-contents call) value)
(setf (cell-rule cell) rule’
(setf (cell-state cel)) @king)
cell))

(defun default (value)
(let ((name (gen-name ’defauit)))
(let ((cell (initialized-cell value name sdefault-rules)}))
{set name cell)
cell)))

(defun parameter (value)
(let ((name (gen-name ‘parameter)))
(let ((cell (initialized-cell value name sparameter-rules)))
(set name cell)
cell)))

(defun constant-value (cell) (cell-contents cell}))
(defglobal sconstantss (gen-hashtable ‘constant-value))

(defun constant (value)
(require-integer value)
(multiple-value-bind (item slot) (hash-lookup value sconstantss)

(or item (hash-install slot
{initialized-cel) value ‘constant sconstant-rules)

econstantss))))

TABLE 6-10. Generation of Constant. Default. and Parameter Cells,

requests. Otherwise a new constant cell is created and installed in the hashiable. (The definition of
hashtables in §0.3.7 was a little long, but sece now how conciscly one can be used! This is the mark
of a uscful data abstraction.)

‘The sharing of constant cclls is not without peril. We must ensure that a constant cell, once
created, is immutable, and particular can never be retracted. 1.ater we will sce code that checks for

this cxplicitly.

L

L

!
|

§63.9 The New Improved Implementation 217

(defmacro variable (name) +(progn (esdestroy ’',name) (setq ,name (gen-cell ’,name))))
(defmacro create (name type) *(escreate ‘,name ,type))

(defun ecreate (name type)
(prog2 (sdestroy name)
(gen-constraint type name)
(run?)))

(statistics-counter gen-constraint "Constraints generated")

(defun gen-constraint (ctype name)
{require-constraint-type ctype)
(statistic gen-constraint)
(require-symbol name)
{let ((c (make-constraint)))
{set name c)
(setf (con-name c) name)
(setf (con-ctype c) ctype)
(setf (con-values c)
(array-of (fortimes (j (array-length (ctype-vars ctype)))
(gen-cell j c))))
(doarray (bucket (ctype-forget-rules ctype))
(dolist (rule bucket)
(and (null (rule-triggers rule))
(enqueue-rule rule ¢ @forget))))

c))

Tanre 6-11, Declaration of Variables and Constraints.

6.3.9. Declaration of Variables and Constraints May Require Housckeeping

The variable and create constructs arc implemented as LISP macros in ‘Table 6-11. A
feature common to both is that before proceeding the the definition the function sdestroy is
called. We will see the definition of this much later; suffice it for now to note that it implements
the destroy operation, causing any old valuc of the variable to be explicitly garbage-collected.
The reason for this care is that the versions of the constraint system in the previous chapter were
sub'jcct 1o a subtle (but fortunately scldom encountered) difliculty: if onc were to declare a variable
or constraint, then re-declare it. the old and new declarations might co-cexist in a single network,
causing some confusion. For example, the sequence of statements

{(variable x)

(create Too adder)
(== x (the a foo0))
(create foo adder)
(== x (the a foo0))

vy o -

IR a3

P S

e et

PO

a

Mo mtay e

it

218 CUAPTLER SiX EFFIFICIENCY

would cause the variable x to be connected to the a pins of wo adders, the old foo and the
new foo! Explicit destruction of the old value avoids this. Destroying a variable or constraint first
disconnccts it from cverything clsc.

When a constraint is generated, the initialization is a little inore complicated than before. An
array of pin cells must be created for the vatues component. (The LISP function array-of takes a
Tist and creates a zero-origin array with the same length as the list, and initializes the array elements
from the list in order.)

When the constraint has been generated, there is onc final task. ‘There may be rules of the
constraint-type which have output pins and no triggers (probably, but not necessarily, they are
@nogood ur @nogoodbeg rules which produce a value speculatively). ‘These rules must be
awakened immediately, to beg for a value, because all their triggers are satisfied! This is done by
the doubly nested loop at the end of gen-constraint. The awakening is done by enqueuing
the relevant rules.

An important principle is that queucd rules must be given a chance to run. ‘Iherefore, when-
ever there is a possibility that a rule (or, for that matter, a contradiction or any other task (though
there are no other kinds in this implementation, 1 strive for gencrality!)) has been queued, the func-
tion run? must be called. This function has the responsibility for starting up the task scheduler if
appropriate. Nearly all the functions which implement user statements of the constraint language
cnd by calling the run? function; screate is onc example.

e

eyt - ¢ e o

A~

R 9

§6.3.10 The New Improved Implementation 219

(defLype'queue (queue-name {queue-entries ‘()) (queue-count 0))
(format stream "<7S "D entr”:@P "D enqueuing™:P>"
(queve-name queue) (length (queue-entries queue)) (queue-count queue)))

-

(defglobal sall-queuess '())

(defun queue-stats ()
(dolist (q (reverse sall-queuess)) (print q)))

(defun reset-queuves ()
(dolist (q sall-queuass)
(setf (queue-entries q) ())
(setf (queue-count q) 0)))

(defmacro defqueue (name)
*(progn ‘compile
(declare (special ,name))
(setq ,name (make-queue))
(setf (queue-name ,name) ‘' nama)
(push ,name sall-queuess)
/,name))

TaBLE6-12. Queue Data Structure and Definition. _J

6.3.10. A Queuc Is Yet Another Abstract Data Structure

A quecuc is implemented as a data structure with a name, a list of entries, and a statistics
counter. (As with hashtables, queuc statistics arc maintained on a per-quecuc basis. ‘The counter
counts the number of entrics ever enqueucd on the queue. ‘This minus the fength of the fist of
entrics yields the number of entrics ever dequeued.) The global 11SP variable sal1-queuess
accumulates a list of all quecues cver defined, and the function queue-stats prints the qucue
statistics (simply by printing the queues, inasmuch as the print function for queues prints the
relevant statistics anyway).

The function reset-queues causes all qucucs to be reset; their entries arce forcibly
removed, and their counters reset to zero. This is a uscful debugging tool when a computation
blows up in the middle.

The macro defqueue defincs a queuc of a given name. It make a queue data structure,
associates the name with it, and adds the qucuc to the list of all queues.

The operations on qucucs arc defined in ‘Table 6-13. 'The predicate queuep is true iff the
argument qucue has any cntrics; it is not legal to dequcuc an entry unless this predicate is true.
(This is not to be confused with queue-p, defined by the deftype declaration of the queue data
type, which is a predicate truc iff its argument is a queue?)

il

220 CHAPTER SIX ErcieNey

P —_ —— e -
(defmacro queuep (queue) :(not (null (queue-entries ,queue))))

(defglobal squeue-traces t)

(defun enqueue (item queue)
(require-queue queue)
(and squeue-traces
(ctrace "Enqueuing S onto “S." item (queue-name queue)))
(increment (queue-count queue))
(push item (queue-entries queue)))

(defun dequeue (queue)
(require-queue queue)
(and squeue-traces
(ctrace "Dequeuing S from ~S."
{car {queue-entries queue))
(queue-name queue)))
(pop (queue-entries queue)))

{defun movequeus (to from)
(require-queue to)
{(require-queue from)
(and squeue-traces
(ctrace "Moving ™S to 7S." from to))
(setf (queue-count to) (+ (queue-count to) (length (queue-entries from))))
(setf (queue-entries to) (append (queue-entries from) (queue-entries to)))
{setf (queue-entries from) ’()))

(defmacro fromqueue ((var queue) . body)
‘(let ((,var (}))
(unwind-protect (prog2 (setq ,var (dequeue ,Qqueue))
' (progn ,@body)

(setq ,var ()})
(and ,var (enqueue ,var ,queue)))))

TABLE6-13. Queue Operations.

‘T'he enqueuing and dequeuing operations provide ctrace output. However, because queue
operations arc so numcrous, the trace output from qucuing opcerations can swamp all other trace
output. ‘Therefore, a special switch squeue-traces is provided to suppress tracing of queue
operations while permitting other trace output,

‘T'he function enqueue adds an entry to a qucue {incrementing the statistics counter for the
qucuc); the function dequeue rcmoves an entry and returns it. This particular implementation
happens to provide LIFO (fast-m, first-out) queucs. This was done for no particular reason other
than that it was easy. A usclul experiment would be to compare different qucuing methods for
cfficicncy in running constraint systems,

‘The operation movequeue moves all the entries from onc qucue to another in one fell
swoop; it is more cfficient than scparately dequeuing and enqueuing cach centry. ‘T'he statistics
counter of the to-queuc is incremented by the number of entrics moved.

Laa

PP

e

AR
—

ol

§6.3.10 The New Improved Implementation 221

The macro fromqueue is provided for dequewing and processing qucuc cntries in a
protected manner. The fonn

(fromqueue (var queue) ... body ...)

cxpands into

(Yet ((var (}))
(unwind-protect (prog2 (setq vur (dequeue gqueue))
(progn ... body ...)

(setq var ()))
(and var (enqueue var quene))))

Now the 11sp special form unwind-protect guarantecs to exccute all argument forms but the
first when returning from evaluation of the first. Even if there is some kind of error, or throw
operation, the extra argument forms arc cvaluated as the stack is unwound (hence the name) past
that point. The fromqueue macro binds the specified variable, then degueues a queue entry from
the queuc and assigns it to var. Things are a triflc unsafe during the instant between the dequeue
and the setg—an asynchronous interrupt at that point could mess things up—-but all is well once
thf irst setq has taken place. 1f for any rcason an error occurs during processing of the body,
then the entry will be re-queued. (An important casc of this is that when processing a contradiction
control may be given to the user to choosce a culprit. He might well just quit to the LISP top level—
in which case the contradiction queuc entry must not be last.) Only if processing is successfully
completed and varset to () is the re-enquicuing avoided. (The safety factor is the entire reason for
the fromqueue macro. ‘That is why the simpler expansion

(et ((var (dequeue quewe)))
(unwind-protect (progl (progn ... body ...)

(setq vr ()))
(and var (enqueue var gquene))))

is not used. The period of unsafety from asynchronous interrupts would extend over the setting up
of the uawind-protect mechanism.)

LR N

SV PR WOUNESUIPRPNT Y

e 2 -

— o nie

-

222 CHAPTER SIX EEFICIENCY

:i; Definitions of queues, in priority order

(defqueue »contra-quaues) ;contradictions to be processed

(defqueue sdetector-queues) ;rules with no outvars

(defqueue svanilla-queues) ;plain rules

(defqueue snogood-queues) ;&NOGOOD and &NOGOONBEG rules

(defqueue sdefer-queues) ;contradictions deferred until rules processed
(defqueue srebel-queues) ;rules which depended on contradictory values
(defqueue spunt-queues) ;contradictions deferred indefinitely

(defglobal srun-flags t)
(defglobal srebel-flags ())

(defun run? () (and srun-flags (rua!)))
(statistics-counter run "Iterations of top-level-loop queue scan”)

(defun runl () .
(do () (()) ;forever
(statistic run)
(cond ((queuep scontra-queues)
(fromqueue (item scontra-queues) (run-contra item)))
((queuep sdetector-queues)
(fromqueue (item sdetector-queues) (run-rule item)))
((queuep svanilla-queues)
(fromqueue (item svanilla-queuee) (run-rule item)))
((queuep snogood-queues)
(fromqueue (item snogood-queues) (run-rule item)))
((queuep sdefer-queues)
(movequeue scontra-queues sdefer-queues))
((and (null erebel-flags) (queuep srebe)-queues))
(setq srebel-flags t)
(do ()
((not (queuep srebel-queues)))
(let ((item (dequeue srebel-queues)))
(enqueue-rule (car item) (cadr item) (caddr item)))})
((and (queuep spunt-queues) (y-or-n-p "Process punted contradictions?"))
(movequeue scontra-queues spunt-queues))
(t (return ‘done)))))

TABLE 6-14. Constraint System Queue Definitions and Task Scheduler.

™

—

oL

s

e

§6.3.11 The New Improved Implementation 223

6.3.11. The Task Scheduler Simply Scans the Queucs in Order

Table 6-14 declares the queucs used in this implementation of the constraint system (which
were described in §6.2.4). The priority order of the queucs has nothing to do with the order of dec-
laration (though they are in fact declared in order for readability); the priority order is determined
by the task scheduler, the function run!. To provide a handle on the scheduler for debugging
purposes (for example, to cxamine the state of the queues after entries have been queued and
before they are processed). there is a switch srun-fiag=. The function run? calls run! only if
srun-flags is sct (which it normally is).

‘The task scheduler checks the first four queucs in order, and whichever is first discovered to
have an cntry, onc cntry is carcfully dequeued and processed. Otherwise, if sdefer-queues
has an cntry, all of the entrics are moved to scontra-queuesfor processing. Otherwise,
if #rebel-queues has an entry, all entrics are scparately dequeued and distributed to the
other rule queucs. (The movequeue function could have been used here at the cost have
having three separatc queucs sdetector-rebel-queues, svanilla-rebel-queues, and
snogood-rebel-queues.) Failing that, then if spunt-queues* has any cntrics, the user is
asked whether they should be moved to scontra~queues for processing. (Vhe 11SP function
y-or-n-p qucrics the user at the terminal by printing the string, then reading a character and
returning true if y, Y, t. T, space, ctc. is typed, or false if n, N, rubout, ctc. is typed.) If there is
nothing at all to do, run! rcturns dene.

i ’.?,:_.‘}';. b

224 CHAPTER SIX FIEFICIENCY

(statistics-counter enqueue-rule “"Rules enqueued") .
(statistics-counter enqueue-added-rule "Added rules enqueued”)

(stalistics-counter enqueue-forget-rule "lforget rules enqueued”)
(statistics-counter enqueue-nogood-rule "Nogood rules enqueued”)

(defun enqueue-rule (rule con reason)
(require-rule rule)
(require-constraint con)

(statistic enqueue-rule) .
(or {eq (rule-ctype rule) {(con-ctype con))
(lose "The CTYPE of ~S doesn’t match that of ~S." rule con)) !
(let ((queue-item (cons rule con))) |
(select! reason

‘ ((Qadded)

‘ (statistic enqueue-added-rule)

! (cond ((null (rule-outvar rule))

(enqueue queue-item sdetector-queues))
((bit-test Qrule-nogood (rule-bits rule))
(enqueue queue-item snogood-queues))
((and (bit-test @rule-nogoodheg (rule-bits rule))
(not (node-boundp (aref (con-values con) (rule-outvar rule)))))
(enqueue queue-item snogood-queues))
(t (enqueue queue-item svanilla-queues))))
((@forget)
(statistic enqueue-forget-rule)
(cond ((or (bit-test @rule-nogood (rule-bits rule))

(bit-test @rule-nogoodbeg (rule-bits rule))) 4

(enqueve queue-item snogood-queues)) '

(t (enqueuve queue-item svanilla-queues)))) ot

{(@nogood) b
(statistic engueue-nogood-rule) Y
(and (not (and (bit-test @rule-nogoodbeg (rule-bits rule)) 4

(node-boundp (aref (con-values con) (rule-outvar rule)))))
(enqueue queue-item snogood-queues))))))

TABLEO-1S. Deading in Which Queue 10 Fagueue a Rule,

6.3.12. The Priority of a Rule Depends on its Propertics

‘The function enqueue-rule of Table 6-15 is used to make an entry on the standard rule
queucs (those other than =rebel-queue). The function takes a rule, the constraint to apply it to,
and the reason for the enqueuing. (The reason is not actually used much here, except to climinate " -
some casc-checking, In an carly version of this implementation, there was a more complicated -
priority structure that depended on the reason for queuing as well as the characteristics of the rule.
This complex structure was simplified for the purposes of the current presentation,) The reason
must be one of the symbolic constants @added. @forget. or @nogood.
If the rule has no output pin (this can occur only if the reason is @added), then it is a detector
rule and is enquecued on sdetector-queues. If the tule has the @nogood or @nogoodbeg 1]

§6.3.13 The New Improved Implementation 225

bit sct, then it should be engueucd on *nogood-queues. A @nogoodbeg rule, however,
should not be engqueued if its output pin has a value alrcady (but this cannot occur if the reason is
@forget). In all other cases the rule is enqueued on svanilla-queues.

6.3.13. Rule Definitions Explicitly Specify Output Pins

Before examining the details of how rules are run, it is appropriate to review the new format
for rule definitions alluded to in §6.2.2 and the conventions for computing values. Recall as an
cxample the definition given before for gate:

(defprim gate (p a b)
((p) (if (or (= p 0) (= p 1)) @dismiss @lose)).
((p &nogoodbeg) () (resolve-among ‘(0 1)))
(p (a b) (if (= a b) @dismiss 0))
(b (p a) (if (= p 1) a @dismiss))
(a (pb) (if (= p 1) b @dismiss)))

A rule definition may have two or three elements. The last is the body, a single 11sp form which
computes the value. The penultimate form is a list of names of trigger pins. ‘The first of three,
if present, may be cither the name of an output pin, or a list containing the name of an output
pin and/or keywords. (Following the [isp Machine 11SP convention, keywords begin with &™)
Currently the only keywords are &nogood and &nogoodbeg (but the syntax allows adding new
keywords later), which nay not be used together and may only be used when an output pin is
specified.

The rule body is executed only if all the trigger pins have values. In addition, a &nogoodbeg
rule need not be run if its output pin already has a value. Within the rule body the names of trigger
pins may be used as 11SP variables to refer to the valucs of the pins (as before). ‘The body should

return cither an integer or one of the valucs @lose or @dismiss, meaning “contradiction™ and
*no value”, respectively. A detector rule is not permitted to return an integer.

-~

. e

Y

226 CHAPTER SIX EFFICIENCY

(statistics-counter run-rule-try “"Attempts to run a rule")
(statistics-counter run-rule-win "Successfully run rules™)
(statistics-counter run-rule-dismiss "Rule runs which dismissed")

(defun run-rule (queue-item)
(let ({rule (car queue-item))
(can (cdr queue-item)))
(require-rule rule)
(require-constraint con)
(or (eq (rule-ctype rule) (con-ctype con))
(lose "The CIYPE of ~S doesn’t match that of “S.™ rule con))
(statistic run-rule-try)
(setf (con-queued-rules con) (logclr (rule-id-bit rule) (con-queued-rules con)))
(do-named check-loop
((tr (rule-triggers rule) (cdr tr)))
((null tr)
(ctrace "Running rule S on “S."” rule con)
(statistic run-rule-win)
(let ((result (funcall (rule-code rule) con)))
(select result
({(@Yose)
(signat-contradiction (forlist {tr (rule-triggers rule))
(aref (con-values con) {car tr)))
con})
((@dismiss) (statistic run-rule-dismiss))
(otherwise
(require-integer result)
(or (rule-outvar rule)
(lose "Rule ~S has no output pin but returned ~S."
rule result))
(process-setc con rule result)))))
(let ((trigger (aref (con-values con) {car tr)}))
(select! (cell-state trigger)
((@slave) (or (node-boundp trigger) (return-from check-loop))})
((@dupe))
((@king @friend @rebel)

(or (bit-test @rule-nogood {rule-bits (ceil-rule trigger)))
(bit-test @rule-nogoodbeg (rule-bits (cell-rule trigger)))
(return-from check-loop)))

((Gpuppet) (return-from check-100p)}}})))

TABLE 6-16. Applying & Rule to a Constraint.

i
,
i

§6.3.14 The New Improved Implementation 227

6.3.14. ‘The Triggers of i Rule Must Have Yalues When It s Run

‘The function run-rule (lable 6-16) takes a queuc entry (containing a rule and a constraint)
from a rule queuc and runs the rule on the constraint if appropriate. First the bit in the con-
straints qucued-rules component corresponding to the rule's id-bit is reset, to indicate that the
rule is no longer on the queue for that constraint. (The LISk function (1ogelr x y) performs
(logand (lognot x) y)—it cleurs bits of y where x has one-bits.) Next alt the triggers of
{he rule are checked. If a trigger is a slave, then its supplier must have a value. If the trigger is a
dupe, it necessarily has a value. On the other hand, a puppet never has a value,

‘The test in the other three cases may seem a trifle strange: the trigger passes the test only if
the rule that supplied the value is a &nogood or &nogoodbeg rule. The key is to realize that if
the trigger is a king. friend. or rebel. then the value must have been computed by the constraint
we arc considering applying a rule for. Now, there is a convention in this constraint system that no
ordinary rulc ever awakens another rule for the same constraint; the same effect can be achieved by
letting the second rule’s triggers include thuse of the first rule and duplicating the first rule’s com-
putation. Such duplication is seldom necessary in practice, and the cffort saved by not awakening
rules is considerable.

If the triggers pass the test, then the rule code (a 11SP function) is applied to the constraint. If
the result is @1ose, a contradiction is signalled via the function signal-contradiction. If
itis @dismiss, then a statistic is tallicd and nothing clse occurs. Otherwisce, the result must be
an integer to be installed as the output pin’s valuc (there must be an output pin) via the function
process-setc.

228 CHAPTIR SIX EiCiENCY

(defun process-setc (con rule value)
(require-constraint con)
(require-rule rule)
(require-integer value)
(let ((cell (aref (con-values con) (rule-outvar rule)))
(sources (forlist (tr (rule-triggers rule))
(aref (ctype-vars [con-cilype con)) tr))))
(ctrace "”S computed 7S for its pin S~
T:[T2«7; from pinTP T(7S7t, T}7]."
con
value
(aref (ctype-vars (con-ctype con)) (cell-name cell})
sources
(length sources)
sogrces)
(process-setc-work con rule value cell)})

(statistics-counter process-setc-override "Rules which overrode other rules”)
(statistics-counter process-selc-supersede "Rules which superseded other rules”)

Tant6-17. Installing & Compuoted Value w a Pin (i)

6.3.15. lnstalling a Value in a Pin Changes the Pin's Cell-state

The function process-setc (Table 6-17) does some crror-checking, prints a trace message,
and then hands off the real work o process-setc~work.

‘The function process-setc-wark (lablc 6-18) docs the error checks all aver again (for
robustness, never trust any code on another page). (Note: when con is () then the given cell is
(rather, was) a default or parameter ccli, and may not be a king, friend, rebel, or dupe. 'This
is uscd by the change function for altering defaults and parameters.) There are then several cases,
depending on the current cell-state of the pin.

If the output pin is a king, friend. or rebel, then some other rule of the same constraint has
alrcady computed a value for the pin. if the new value is not the same as the current value, then
it 1s & hard crror (rules of the same constraint shouldn’t conflict). unless the rule which computed
the old value was a &nogood or &nogoodbeg rule. in which casc the new value may override
the old onc: the old one s forcibly forgotten, and then the processing restarted (by simply calling
process-setc-work lil-recursively). If the new value is the samce as the old value, then noth-
ing need be done, but as a peculiar heuristic the new rule supersedes the old one as the justification
if the new rule’s triggers arc a subset of the old one’s triggers—this ntakes the value less likely 1o be
forgotten if an unnccessary trigger is forgoten. However, it is not correct o do this merely because
the size of the new rule’s trigger set is smaller than that of the old rule: that might introduce

circular dependency structures. The new trigger sct must be a subsct of the old.

§6.3.15 The New Improved Implementation 229

{defun process-setc-work (con rule value cell)
(and con (require-constraint con))
1 (require-rule rule)
(require-integer value)
(require-cell cell)
(setect! (cell-state cell)
{(8king Bfriend Qrebel)
(or con {(lose "No constraint in PROCESS-SEIC-WORK?"™))
(cond ({not (equal (cell-contents cell) value))
(cond ((bit-test @rule-nogoodbeg (rule-hits (cell-rule cell)))
(ctrace "Rule 7S overrides value ~S of rule “S with ~S."
rule (cell contents cell) (cell-rule cell) value)
(statistic process-setc-override)
(forget cell)
{(process-setc-work con rule vatue cell))
(t (lose "Rules S and °S of ~S disagreed on value for pin °S ~
(respective values were ~S and 7S)."
(cell-rule cell)
rule
con
(aref (ctype-vars (con-ctype con)) (cell-name cell})
{cell-contents cell)
value))))
((contains (rule-triggers (cell-rule cell)) (rule-triggers rule))
(statistic process-setc-supersede)
(setf (cell-rule cell) rule)))) ;bogus heuristic
((Gpuppet)
(setf (cell-contents cell) value)
(setf (cell-rule cell) rule)
(setf (cell-state cell) Bking)
(awaken-all (node-cells cell) Qadded cell))
((@slave @dupe)
{setf (cell-contents cell) value)
(setf (cell-rule cell) rule)
(cond ((node-boundp cell)
(cond ({equal value (node-value cell))
(setf (cell-state cell) @friend))
(t (setf (cell-state cell) @rebel)
{increment (node-contra cell))
(nole-rule-contradiction con rule cell))))
((eq (cell-state cell) Qdupe)
(lose "7S was a @DUPE in a valueless node." cell))
(t (usurper cell)
(setf (cell-state cell) @king)
(awaken-all (node-cells cell) Radded cell})))))

Fanr6-18. Installing a Computed Value in a Pin (i)

If the output pin is a puppct, then it can simply be made king. the vatue installed, and all the
cells of the node awakencd (except the output pin itself—this suppression is accomplished by the
third argument to awaken-all),

If the output pin is a slave or a dupe, then if the node’s supplicr has a value (it must if the pin
is a dupe!). the output pin becomes a friend or a rebel depending on whether or not the new value

230 CHAPTER SIX EFFICIENCY

agrees with the king's. 1f it becomes a rebel, the contra count of the node is incremented, and the
contradiction created is noted via note-rule-contradiction.

If the output pin is a slave and the node is supplicd by a puppet. then the output pin usurps
the puppet’s throne, makes itscif king, and awakens all the cclls excepting itsclf. (Usurpation causes
the specified cell to become the supplier of the node.)

hahe st ke

-

§6.3.16 The New Improved hnplemeniation 231

T
-

—
[A \

i
- & A & & ‘ j
{a) Rooted at cell X (b) Re-rooted atcell Y

gho . o

FIGURIE 6-0. Usuiping a Supplicr. 3

(statistics-counter usurper "Usurpations”)

(defun usurper (cell)

(require-cell cell)

(statistic usurper)

(let ({s (node-supplier cell))))
(point-1inks-toward cell) 4
(let ((sc (celi-state cell)) .

{(sx (cell-state s))) :1
(setf (cell-state s) sc)
(setf (cell-state cell) sx)))) 1

(defun point-links-toward (cell)
(require-cell cell)
(do ({x cell (progl (cell-link x) (setf (cell-link x) y)))
(v () x))
((eq x (node-supplier cell))
(setf (cell-link x) y)
(setf (node-supplier cell) cell)))) : ;{

TABLE6-19. Usurping the Throne of the Supplicr of a Node.

- el

232 CUAPTER SIX ERrIciNcy
6.3.16. Usurping a Supplicr Simply Reverses Links from Usurper to Supplicr

The aperation of usurpation takes a cell and causes that cell to be the supplier of its node. The
primary task here is rearrangement of the link components so that alt link paths Icad to the new
supplicr. ‘This is casy. Consider the path along link cdges between the propesed usurper and the
current supplicr. If those cdges are simply reversed in direction, then the desired resultis produced.
An cxample of this appears in Figure 6-6, wheih depicts the link edges connecting the cclls of a
node. In IFigure 6-6a the cell X is the supplier. In INigure 6-6b the cell Y has usurped X, and the
links along the path from Y to X have been reversed (indicated by heavy arrowhcads).

The function point-links-toward (luable 6-19) accomplishes this task. (In structure
point-links-toward is similar to the 11SP function nreverse, which destructively reverses
a list) At cach step x is a cell along the path from usurper to supplicr, and y trails one step
behind; on cach iteration, and at the end. onc link cdge is reversed. The function usurper calls
point-links-toward and also then exchanges the cell-states of the usurper and old supplier,
as a convenience (often this docs the right thing, as when a slave usurps a puppet).

[P

Radndi

233

(defun signal-contradiction (cells con)
(require-constraint con)
(ctrace "Contradiction in “ST@[among these pins: ~:{7S=7"S7:+, "}~]."
con
(forlist (cell cells)
{require-cell cell)
(list (aref (ctype-vars (con-ctype con)) (cell-name cell))
(cell-value cell)})))
(enqueue (lists Q@constraint
con
(forlist (cell cells)
(require-cell cell)
(cons cell (cell-vatue cell))))
scontra-queues))

(defun note-rule-contradiction (con rule cell)
{(and con (require-constraint con))
(require-rule rule)
(require-cell cell)
(or (and (eq (cell-state cell) @rebel)
(eq (cell-state (node-supplier cell)) @king))
{(lose "7S doesn’t conflict with S after all!" cell (node-supplier cell)))
(and con
(let ((triggers (forlist (tr (rule-triggers rule))
(aref (con-values con) tr))))
(ctrace “Contradiction in "ST@[among these pins: ~:{7S="S7:+, "}7 ;7
"%/ it calculated ™S for S from the others by rule °S."
con
(cons (list (aref (ctype-vars (con-ctype con)) {cell-name cell))
(node-value cell})
(forlist (c triggers)
(require-cell ¢)
(list (aref (ctype-vars (con-ctype con)) (cell-name c))
(cell-value ¢))))
(cell-contents cell)
(aref (ctype-vars (con-ctype con)) (cell-name cell))
rule)))
(enqueue (list @node cell (node-supplier cell))
scontra-queues))

(defun disallow (&rest cells)
(dolist (c cells) (require-cell c))
(let ((prems (Fast-premisess cells)))
(enqueue (cons @resolution (forlist (p prems) (cons p (cell-value p))))
scontra-queues)

(run?)))

TABLE 6-20. Signatling Contradictions.

234 CHAPTER SiX FEFICIENCY

6.3.17. Signalling a Contradiction Merely Queues a Contradiction Task

The functions signal-contradiction (used by the function run-rule in Table 6-16
{page 226)) and note-rule-contradiction (uscd by the function process~setc-work
in ‘lable 6-18 (page 229)) cach signal a contradiction by enqucuing a task to process it later.
Apparently the only difference between them is the error checks they perform and the trace output

cmitted: however, they engucue slightly different kinds of tasks. The function signal-contradiction

(lable 6-20) is called when some rule returned @lose to indicate that a contradiction was
detected without returning a value. In this case the contradiction is blamed on the constraint, and
a @constraint contradiction task is enquecued. ‘The queue entry contains the constraint which
detected the contradiction, and an association list of pins with values, indicating the trigger values
that caused the contradiction. "this information must be saved because by the time the contradic-
tion task is dequeuced for processing the pins may have different values, but the contradiction is
bascd on those particular valucs. If the pins no jonger have those values, then the contradiction
described by the queuc entry is no longer in effect.

On the other hand, note-rule-contradiction cnqucues a 8node contradiction task.
‘The queue entry contaias two cells of the same node which are in conflict, one being the supplier
(at the time the task is enquecued) and the other a rebel. 1€ when the task is processed the cells no
longer conflict, then the contradiction is no longer in cffect.

The user function disallow excmplifies the third kind of contradiction task, of type
@resolution. The qucue entry contains an association list of cells and values as for a
@constraint task. but mentions no constraint. The cells have no local association, but have been
determined from global considerations to be contradictory when they have those values. Usually
such a collection of cells is obtained by resolution of nogood sets, but here disallow allows the
user to specify an arbitrary contradictory sct of cells. ‘The collective premises of the cells supplicd
by the user are tracked down and declared contradictory. As v ith all user interface functions which
enqueue tasks, disalTow finishes by calling run? to cnable task scheduling if appropriate.

§63.17

(defun run
(statist

(setect!

(stat
(let

(re
{re

(let

(

(let

{

The New Improved Implementation 235

{statistics-counter run-contra "Contradictions dequeued for processing”)
{statistics-counter cun-contra-node "@NODE contradictions dequaued for processing”)
(statistics-counter run-contra-ronstraint

"@CONSTRAINT contradictions dequeued for processing”)

(statistics-counter run-contra-resolution

"@RESOQLUT [ON contradictions dequeued for processing”)

-contra (queue-item)
ic run-contra)

(setq srebel-flags ())

(car queue-item)

{{@node)

istic run-contra-node)

((cl (cadr queue-item))
(c2 (caddr queue-item)))

quire-cell cl)

quire-cell c2)

{(or (null (cdddr queue-item))

(lose "Bad BNODL contradiction queue item “S." queue-item))

(or (not (eq (cell-repository c1) (cell-repository cl)))

{not (eq (cell-true-supplier c1) cl))

(not (eq (cell-true-supplier c2) c2))

{and (node-boundp c1) (equal (cell-contents cl) (cell-contents c2)))
(process-contradiction gqueue-item (cdr queue-item)))})

((@constraint)
(statistic run-contra-constraint)

((con (cadr queue-item))
(alist (cddr queue-item)))

{require-constraint con)
(do ((a alist (cdr a)))

{{oull a)
{process-contradiction queue-item (forlist (a alist) (car a)) con))
let ((cell (caar a))
(val (cdar a)))
(require-cell cell)
(require-integer val)
(or (and (node-boundp cell) (equal (cell-contents cell) val))

(return}}))))

((@resolution)
(statistic run-contra-resolution)

((alist (cdr queue-item)))

(do ((a alist (cdr a)))

((null a) (process-contradiction queue-item (forlist (a alist) (car a))))
let ((cell (caar a))
(val (cdar a)))

(require-cell cell)
(require-integer val)
{(cond ((or (not (node-boundp cell))

(not (equal (cell-contents cell) val)))

{install-nogood-set
(forlist (a alist) (cons (cell-repository (car a)) (cdr a)}))

(return)))))))))

Tap:6-21. Running a Contradiction Task.

I 0 SRR

-_-w...-_.‘ .
: 500 sl Sk 2 d

BT S

—fh et mai

.

o

236 CUHAPTER SIX EI'TICIENCY ’ 1

6.3.18. Contradictions Must Still Hold at the Time of Processing

‘The purposc of the function run~contra (fTable 6-21) is to verify that a dequeued con- }
tradiction task still describes a contradiction, If the contradiction is still in the network, it is handed '
off to process~-contradiction;if not, then the task is dismissed and forgotten. r

There are three kinds of contradiction (@node, @constraint, and @resolution), and so
three cases in the code for run-contra.

Fora @node task, the gucuc entry contains cxactly two cells, which at the time the task was
qucucd were cells of the same node asserting different values, The contradiction no longer holds
if they no longer share a repository (and so arc no longer of the same node—they may have been
disconnected?); if cither is not its own true supplier (if onc is now a slave or dupe, then another
contradiction will have been engueued involving the new king or rebel, so this one need not be
processed); if cither has no value: or if their valucs agree.

lora Bconstraint task. the queue item has a constraint and an association list pairing pins
of the constraint with values that triggered a contradiction. The contradiction still holds only if all
the cells still have values matching the paired valucs,

Fora @resolution task, the queuc item has just an association list pairing cells with valucs
that triggered a contradiction. Vhe contradiction still holds only if all the cells still have valucs
matching the paired values. If the contradiction docs not now hold, however, it is nevertheless
important that a nogoeod sct be installed.

——-— -

§6.3.18 The New Improved Implementation

237

(defmacro mark-cell (cell val) +(setf (cell-mark ,cell) ,val))
(defmacro unmark-cell (cail) <(setf (cell-mark ,cell) ()))
(defmacro cell-markp (cell) ¢(cell-mark ,cell))

{declare (special sdet'aultses sparameterss snogoodss sdefault-treess elinkss))

(defun fast-premises (cell)
{(require-cell cell)
(prog ((sdefaultses ‘())
(sparameterss '())
(*nogoodss ‘())
(sdefault-treess ‘())
(slinkss "()))
(Jet ((flag (fast-premises-mark cell}})
(select flag
((@lose @dismiss))
(otherwise (push (if (aull (cdr flag)) (car flag) cell)
sdefault-treess))))
(fast-premises-unmark cell)
(return (append sdefaultss sparameterss snogoodss)
sdaefaultss sparameterss snogoodss sdofault-treess slinkss}))

(defun fast-premisess (cells)
(prog ((sdefaultse ’())
(sparameterss ’())
(snogoodss /())
(sdefault-treess ’())
(slinkses ’{)))
(let ((flag (fast-premises-marke cells)))
(select flag
((@lose @dismiss))
(otherwise (setq sdefault-treess
(if (< (length flag) (length cells)) flag cells)))))
(fast-premises-unmarks cells)
(return (append sdefaultss sparameterss snogoodss)
sdefaultss sparameterss +nogoodss sdefault-treess slinkss)))

TABLE 6-22. Fast Computation of Premises and Related Quintitics.

238 ClapPteRr Stx EIFICIENCY !

6.3.19. Computation of Premises Also Determines Summarizations of Defaults

Before we consider the processing of contradictions, it is appropriate to discuss the tracing
of premises and the determination of an appropriate summarization (as described in §6.2.6). The
function fast-premises in Table 6-22 computes not only the list of premises, but also scparate
lists of parameter, dcfault, and “nogood™ (assumption) premiscs, a list of summarizations of
the defaults (called the “default-trees™ because cach summarization is the root of a tree whose
leaves are defaults), and the sct of links between cells traversed at cach node (this is the set of
equatings along which the computation traveled). ‘These quantities are accumulated in the 11SP
special variables bound o empty lists in the prog. The list of premises is simply the concatena-

l tion of the lists of defaults, parameters, and asswptions. After fast-premises-mark and :
fast-premises-unmark arc called, all six lists are returned as valucs, using the Lisp Machine L
Li1SP multiple-valuc convention. If fast-premises is called as a simple 11SP function, the list of
premises is the result (as before), and the other five lists arc discarded. All the lists can be obtained
by using the Lisp Machinc LISP multiple-value-bind construct.

The function fast-premisess performs the same operation on a list of cells.

The macros mark-cell, unmark-cell, and cell-markp arc operations on the mark
componcnt of a cell, Note that mark-~ce 11 takes an extra argumcent which is the mark value (thus
it implements not a mark bir, but a mark quantity.

"lIlllIII-'l--"'-"-"'-'-F-l"-'-"'.l-Illl.llIlIIIIIIl.lI'lllI"l.lll'll-“'lllll.llllll.ul'InF*.

§6.3.19 The New Improved Implementation 239

(defun fast-premises-mark (cell)
(require-cell cell)
(and (node-boundp cell)
(1et ((s (cell-truve-supplier cell)))
{cond ((cell-markp s)
(and (eq (cell-mark s) t) (lose "Circular dependency at S " cell))
(cell-mark s))
(t (mark-cell s t) ;for error checking!
(fast-premises-mark-1inks cell s)
(let ((result (fast-prcemises-mark-test s)))
(mark-cel) s result)

result))))))

(defun fast-premises-mark-links (x y)
(prog foo (1inksl V1inks2)
{(do ({(c x (cell-link c)))
{(null (cell-link c)))
(cond ((eq c y)
(setq s1inkss (nconc linksl slinkss))
{return-from foo)) ;fast escape
{(t (push {cons ¢ (cell-link c)) linksl))))
(do ({(c y (cell-link c)))
{((nul) (cell-link c)))
(cond ((eq ¢ x)
{setqg slinkss (nconc links2 slinkse))
(return-from foo)) ;fast escape
(t (push {cons ¢ (cell-link c}) 1inks2))))
(setgq slinkss (nconc linksl 1inks2 slinkss))))

{(defun fast-premises-mark-test (s)
{(cond ((eq (cell-rule s) sdefault-rules)

(push s sdefaullss)

(list s))

((eq (cell-rule s) eparameter-rules)

{(push s sparameterss)

@lose)
((eq (cell-rule s) sconstant-rulee) @dismiss)
((or (bit-test @rule-nogood (rule-bits (cell-rule s)))

(bit-test @rule-nogoodbeg (rule-bits (cell-rule s))))

{push s snogoodss)

@lose)
(t (fast-premises-marks

(forlist (tr (rule-triggers (cell-rule s)))
(aref (con-values (cell-owner s)) tr))))))

TABLE6-23. Gathering Premise and Link Information.

240 CHAPTER SiX ErricieNey

The function fast-premises-mark (lTable 6-23) is a good deal more complex than
before. Al the information is accumulated in the global variables bound in fast-premises,
and the functional value of fast-premises-mark is used as a flag. The symbolic constants
@dismiss and @lose arc abusively pressed into service here. If the returned value is
@dismiss then no default, parameter, or assumption cclls were encountered in the subtree
depending from the argument cell. If the returned value is @1ose then a parameter of assumption
cell was scen somewhere. Otherwise the returned valuc is a list of all the default cells found in the
subtree.

When acellis given to fast-premises-mark, its truc-supplicr is taken. If it is unmarked,
then the mark is first set to t. The operation fast-premises-mark-1inks accumulates the
link information between the cell and the true-supplier, and then fast-premises-mark-test
figures out an appropriate return value. This vialue is then stored in the mark for the true-supplier.
If this ccll is ever encountered again during the tracing of premises, the contents of the mark
component is returncd immediately. An important point is that the value t can never be scen in a
mark cell—that valuc is put in only for an crror check! [it is scen, then the dependency structure
must be circular (because there is a t in cclls only along the path from the root of the tree being
scarched to the cell currently being considered).

The function fast-premises-mark-Yinks fullows the links from the ccll and its true-
supplier, pushing pairs of cells representing equatings onto =1 inks». Normally the supplicr will
be the node’s supplier, and so the first do loop will get them all. However, if the ccll is a dupe and
the truc-supplier a rebel, then there arc three cases:

() Following links from the dupc leads to the rebel,
(2) FFollowing links fiom the rebed leads to the dupe.
(3) Following links from cither lcads to the node’s supplicr before reaching the other.

Al of these cases have to be dealt with properly.

§6.3.19 The New Improved Implementation 241

{(defun fast-premises-marks (cells)
(let ((trees ‘())
(defaults ())
(state @dismiss))
(dolist (c cells)
{(let ((result (fast-premises-mark c)))
(select result
((Qlose) (setq state Qlose))
((@dismiss))
{(otherwise
(push ¢ trees)
(select state
((@lose))
((@dismiss) (setq state t) (setq defaults result))
(otherwise (setq defaults (unionqg result defaults))))))))
(and (eq state @lose)
(setq sdefaull-treess .
{(nconc (if (< (length trees) (length defaults)) trees defaults)
sdefault-treess)))
(if (eq state t) defaults state)))

(defun fast-premises-unmark (cell)
(require-cell cell)
(let ((s (cell-true-supplier cell)))
(cond ((cell-markp s)
(unmark-cell s)
(fast-premises-unmarks
(forlist (tr (rule-triggers (cell-rule s)))
(aref (con-values (cell-owner s)) tr})))))))

(defun fast-premises-unmarks (cells)
{dolist (cell cells) (fast-premises-unmark cell)))

TABLE6-24. Tracing Premises for a List of Cells, and Unmarking.

‘Ihe function fast-premises-mark-test handlcs the various cases and determines the
villue to be returned as described above. 1 the supplier is not interesting, then the triggers for the
rule that computed its value arc recursively traced using fast-premises-mark® (Table 6-24). This
function traces cach of the given cells, and combines the results. If any of them contains something
other than a default cell (the value @10se was returncd), then @1ose must be returned from
this level, and the subtrecs appropriately summarized and added to sdefault-treess. At
each recussive level of call to fast-premises-mark» a heuristic summarization can be done.
Note that the sct-union operation unionq is used rather than append because subtress may be
shared, and some of the results may have been obtained from cached lists in the ccll marks. All this
serves to reduce the size of nogood sets as much as possible,

‘The functions fast-premises-mark and fast-premises-marks, as before, run
around and resct all the cell marks.

alacidie inacd.

ey

242 CHAPTIR SiX EF1ICIENCY .

(statistics-counter process-contra "Contradictions actvally processed”)
(statistics~counter process-contra-avto "Nogood culprits automatically chosen")

{defun process-contradiction (queue-item cells &optional (con () conp)) ;
(and conp (require-constraint con)) !
(statistic process-contra) i
{multiple-value-bind (premises defaults params nogoods trees 1inks) |

{(fast-premisess cells) !
{cond ({not (null nogoods)) !
(ctrace "Deeming ~S in 7S {computed by rule “S) to be the culprit.” r
(cell-value (car nogoods))
(cell-id (car nogoods))
(cell-rule (car nogoods))) |
(statistic process-contra-auto)
(form-nogood-set ;
I

(append nogoods params trees))
(sretract (car nogoods)))
{((nul) premises) (lose "Hard-core contradiction!"))
({(nul1 (cdr premises))
(and params (form-nogood-set (append params trees))) o
(eretract (car premises)))
(t (and params (form-nogood-set (append params trees)))
(let ((choice (choose-culprit premises)))
(select choice
((8defer) (enqueue queue-item edefer-queues))
‘ ((@punt) (enqueue queue-item spunt-queues)) f'
(otherwise (require-cell choice) (sretract choice)))))))) .

! TABLE 6-25. Processing of Contradictions. _J “ A

.

[6.3.20. Contradiction Processing Traces Premises and Chooses a Culprit

| Now that fast-premises thoughtfully divides the premiscs into groups and returns them,

the task of process-contradiction (Table 6-25) is casier. It callcs fast-premises using
multiple-value-bind to get the six return valucs, and then makes some simple tests. If

there are any assumptions, a nogood set is formed from the assumptions, the nogoods, and the

summarizations of defaults, and then the first assumptions is arbitrarily chosen for retraction. [F

there arc no premiscs at all, it is a hard contradiction. If there is one premiise, it is chosen by default

for retraction, and a nogood sct is formed if there are any parameter cells among the premises,

Otherwisc, choose-culprit is called to sclect a culprit (and, as in the previous case, a nogood v
sct is formed if any paramecters arc involved). If choose-culprit rcturns @defer or @punt ‘
rather than a culprit, then the contradiction is re-qucucd for later processing.

§6.3.20 The New Improved Implementation 43

(defun form-nogood-set (cells)
(setq cells (sort (append cells '()) #'node-lessp))
(ctrace "The set™: {™<7%;|78X™:16,72; ~S=7"S7>7:+,7}™<"%;|78X~:156,72; is no good.™>"
(forlist (c cells) (Vist {cell-goodname c) (cel)-value c))))
(install-nogood-set
(forlist (c cells) (cons (cell-repository c¢) (cell-value c)))))

(statistics-counter nogood-set "Nogood sets installed”)

(defun install-nogood-set (alist)
(statistic nogood-set)
(let ((nogood (cons ‘mogood alist)))
(dolist (pair alist)
(let ((rep (car pair))
(val (cdr pair)))
(let ((slot (assoc val (rep-nogoods rep))))
(cond (slot (or (member nogood (cdr slot}) (push nogood (cdr slot))))
((or (null {rep-nogoods rep))
(< val (caar (rep-nogoods rep))))
(push (list val nogood) (rep-nogoods rep)))
(t (do ((ng (rep-nogoods rep) (cdr ng)))
((or (null (cdr ng))
(< val (caar (cdr ng))))
(setf (cdr ng)
(cons (list val nogood)

(cdr ng)NNNN)

TABLE 6-26. Formation and {nstallation of Nogoud Sets.

(defun choose-culprit (losers)
(format t ""%;;; These are the premises that seem to be at fault:™
T{T%;T8XTSTA{ == ST} ,)"
(forlist (p losers)
(cons p (mapcan #/(lambda (c)
(and (globalp c)
(eq (cell-true-supplier c) p)
(list (cell-name c))))
{node-cells p)))))
(format t "7%;;; Choose one of these to retract and RETURN it.")
(1et ({culprit (break "Choose Culprit")))
(cond ((or (eq culprit @defer) (eq culprit @punt)) culprit)
((memq (cell-true-supplier culprit) losers)
(cell-true-supplior culprit))
(t (choose-culprit losers)))))

TABLE6-27. Choosing a Culprit.

Nogood scts have the same structurc that they did in previous versions i the system.
However, form-nogood-set (lable 6-26) has been split into two functions, one to print a trace
message and form the nogood a-list, and one (install-nogood-set) to do the real work. 'The
latter function is called from within run-contra (lable 6-21).

ARt e e

i

i AT

-

244 CHAPTER SIX ErriciENey

The function choose-culprit (Tabic 6-27) has changed a bit, to allow the return of the
flags @defer and @punt in place of a culprit. Also, a contradiction can involve several cells of
the same node, and if the culprit is identified by returning a cell other than onc of the premises, it
isn't cnough to test that it is in the same node as a premise, for that may not uniquely identify the
intended culprit. Instead, if an alias is supplicd then its truc-supplicr must be one of the premises.
To aid in this discrimination, a name is printed in the message as an alias only if it is suitable for
identifying a culprit.

PP

§6.3.20 The New Improved Implementation

245

(statistics-counter awaken "Awakenings”)
(statistics-counter awaken-added "QADDED awakenings")
(statistics-counter awaken-forget "Q@FORGET awakenings")
(statistics-counter awaken-nogood “@NOGOOD awakenings”)

(defun awaken (cell reason)
(require-cell cell)
(statistic awaken)
{let {(con (cell-owner cell)))
{cond ((not (null con))
(require-constraint con)
{(let ((rulearray (select! reason
((R®added)
(statistic awaken-added)
{ctype-added-rules (con-ctype con)))
((@Forget)
{statistic awaken-forget)
(ctype-forget-rules (con-ctype con)))
((@nogood)
(statistic awaken-nogood)
(ctype-nogood-rules (con-ctype con))))))
(dolist (rule (aref rulearray (cell-name cell)))
(or (bit-test (rule-id-bit rule) (con-queued-rules con))
(do ((tr (rule-triggers rule) {(cdr tr})

(rebelp ()
(or rebelp
(let ((v (aref (con-values con) (car tr))))
(or (eq (cell-state v) @rebel)
(eq (cell-state v) @dupe))))))
((null tr)

(cond (rebelp (enqueue (list rule con reason)
srebel-queues))
(t (enqueue-rule rule con reason))))
(or (node-boundp (aref (con-values con) (car tr)))

(return)}})))))))

(defun awaken-all (cells reason Zoptional (exception () exceptionp))
(and exceptionp (require-cell exception))
{(dolist (cell cells)
(require-cell cell)
(and (not (eq cell exception))
(awaken cell reason))))

TABLE 6-28. Awakcening of Rules.

s "

246 CUAPTER Six EFFICIENCY

6.3.21. Awakening Selects Only Relevant Rules for Queuing

The rule-array structure for constraint-types is a pre-compiled catalogue indexing for cach pin
and each reason for awakening which rules should be run. All that awaken (Table 6-28) need do
is check that the given cell has an owner, sclect the appropriate array from the constraint’s type, and
index into the array according to the cell's pin-number, and voila! all the relevant rules are in hand.

The rules could simply be enqueucd on *vanilla-queuex and the system would work.
However, an attempt is made to avoid enqueuing rules whose triggers do not all have values. (This
situation might change between the time the rule is enqucucd and the tirne it is dequeucd, but if
that occurs the rule will be queucd anyway when the othes triggers gain valucs.) Also, if any trigger
is a rebel value then tae rule is put on the low-priority =rebel-queues on the intuition that one
should compute values that have certain support in preference to those that do not (this can only
occur anyway if contradictions have been deferred).

The function awaken-all awakens a list of cclls for a specified reason, but will avoid
awakening a particular cell if that is given as a third argument. This is generally used to awaken all
the cells of a node except that which generated the value.

>

FFTTTTL T

PRI (9 | 'Y,

e Zm

§63.22 The New Improved Implementation

247

(statisiics-counter forget "Values forgotten”)

(defun forget (cell &optional (source () sourcep) (via () viap))
(require-cell cell)
(and (eq (cell-rule cell) sconstant-rules)
(lose "lllegal to FORGET the constant °S." cell))
(and sourcep (require-cell source))
(and viap (require-cell via))
(statistic forget)
(ctrace "Removing =S from ~S”:[~3«"; because ~:[of ~;7S=="]"§7]."
(cell-contents cell)
{cell-goodname cell)
sourcep
(and viap (not (eq via source)))
(and viap (not (eq via source)) (cell-goodname via))
(and sourcep (cell-goodname source)))
(select! (celi-state cell)
((8friend)
(setf (cell-contents cell) ())
(setf (cell-rule cell) ())
(setf (cell-state cell) Bslave))
{(@rebel)
(setf (cell-state cell) @slave)
(decrement (node-contra cell))
(awaken cell Qadded)
(et ((fcellsets ’()))
(dolist (c (rep-cells (cell-repository cell)))
(cond ((and (eq (cell-state c) @dupe)
(eq (cell-contents c) cell))
(seLf (cell-state c) 8slave)
(awaken ¢ Badded)
(push (cons ¢ (forget-consequences c)) fcellsets))))
(dolist (q fcellsets)
(dolist (f {cdr q))
(forget f cell (car q))))))
((®xing)
(do ((x (node-cells cell) (cdr x)))
((nuld x)
(forget-friendless-king cell))
(cond ((eq (cell-state (car x)) @friend)
(usurper (car x))
(setf (cell-contents cell) ())
(setf (cell-rule cell) ())
(setf (cell-state cell) @slave)
(or (zerop (node-contra cell))
(dolist (c (node-cells cell))
(and (eq (cell-state c) @rebel)
(enqueue (list @node c (car x)) scontra-queues))))
(return})}))
((8slave @puppet @dupe))))

TABLE 6-79. Forgetting a Cell's Value and lis Conscquences.

4 m——

o TRl

248 ChaPTER SIX Erriciency
6.3.22. Forgetting a Cell's Value Lets Friends (Or Rebels) Step In

When a cell’s value is forgotten, the “begging™ process done in previous versions of the system
need not be performed. It is not necessary to beg a rule to compute a value for its output pin, be-
causc it will do so when it is good and ready and has all its triggers; and the value, once computed,
will not be lost because every cell can have a value. (The exceptions are rules with no triggers—they
arc invoked when the constraint is generated, or when the status of a nogood sct changes if they are
&nogood or &nogoodbeg rules. Also, a constraint-type’s ctype-forget-rules array will

_prove very uscful for explanation purposes.)

On the other hand, when a supplier cell's value is forgotten and another cell of the node has
a value, the second cell may immediately step in as the new supplicr for the node (this is the ad-
vantage of recording multiple support for values), and avoid further perturbations of the network.
If the new value is different, however (provided by a former rebel), then rules need to be awakened
on the newly added trigger value. Therefore, paradoxically, the forget function only performs
awakenings for the reason @added!

§63.22 The New Improved Implementation 249

(defun forget-consequences (cell)
(tet ((fcells “()))
(and (cell-owner cell) :
(doarray (v (con-values (cell-owner cell)))
(select! (cell-state v)
({@king @friend @rebel)
(and (not (eq v cell)) (member (cell-name cell)
(rule-triggers (cell-rule v)))
(push v fcells)))
((@slave @Qpuppet @dupe)))))
fcells))

(defun retract (cell)
(sretract (cell-true-supplier cell))
(run?))

(defun sretract (cell)
(require-cell cell)
(ctrace "Retracting the premise ~S." cell)
(forget cell))

(defun change (cell value)

(require-cell cell)

(require-integer value)

(let ((s (cell-true-supplier cell)))

(let ((rule (cell-rule s)))
(cond ((not (or (eq rule sdefault-rules)
(eq rule sparameter-rules)))
(lose "Supplier of ~S is not a DEFAULT or PARAMETER." cell))
((or (not (+«forbiddenp value s))
(y-or-n-p "That value is contradictory; do it anyway?"))

(sretract s)
{(process-setc-work () rule value s)

(run?))))})

Tan6-30. Retracting a Value, and Tracing of Consequences.

‘The actions taken when a cell’s value is forgotten depends on the state of the cell. Ifit is a
slave, puppet, or dupe, then nothing need be done, as it has no valuc. (It might scem at first that
such a cell should not be forgotten in the first place. However, if x was computed from triggers y
and z, and y had z as a trigger, and then z is retracted, then when z s forgotten both y and
x must he forgotten. If y is forgotten, then x is recursively forgotten; it may then become, say, a
slave. Then x may be forgotten again on account of z.)

If the cell to be forgotten is a friend, then its value quictly disappears and it becomes a slave to
the king. No other cell is affected. If it is a rebel, then it and all its dupes become slaves. ‘Their rules
must be awakened for reason @added because they all suddenly become aware of the valuc of the
king. (Such awakened rules are not run at once—merely queued for fater processing. ‘Fhis is impor-
tant to the integrity of the system: the forgetting process must complete hefore any rules are run to
ensure that all computed quantitics have well-founded support. (Well-foundedacess is not the same

Y.

s

e

PR N

250 CHAPTER SIX E11iCtENcY

thing as consistency; it merely means that a value is correctly derived from premises. The premises
need not be consistent, however, for computed values to be well-founded. Indeed, contradictions
are detected by the very fact that two well-founded vafuces conflict. Conflicting values tha. are not
well-founded are not informative.) ‘

If a king is to be forgotten, then a major uphcaval occurs. If the king has a friend, then the
friend steps into its place. This is the most desirable alternative because the primary value of the
node docs not change, and slaves need not be bothered. The friend usurps the throne, and if there
arc any rcbels then contradictions tasks for the conflict between the former friend and the rebel
must be enqucucd.

PR

e
4 T

7

y
2
!
W

§6.3.22 The New Improved Implementation

251

{defun forget-friendless-king (cell)
(require-cel) cell)
(dolist (nogood (cdr (assoc {cell-contents cell) (node-nogoods cell))))
(do ((ng (cdr nogood) (cdr ng))
(unique-loser ()))
((aull ng)
(and unique-loser
(awaken-all (rep-cells unique-loser) @nogood)))
(and (or (not (node-boundp (rep-supplier (caar ng))))
(not (equal (node-value (rep-supplier (caar ng)))
(cdar ng))))
(if unique-loser
(return)
(setq unique-loser (caar ng)}))))
(let ((fcellsets ‘()) (rebel ()))
(dotist (¢ (rep-cells (cell-repository cell)))
(select! (cell-state c)
((@king @dupe))
((@slave) (push (cons ¢ (forget-consequences c)) fcellsets))
((@rebel) (setq rebel c))
((@friend) (lose "Already established that ™S had no friends."” cell))
((@puppet) (lose "OKING ™S and @PUPPET ™S in same node." cell c))))
(cond ((null rebel)
(setf (cell-contents cell) ())
(setf (cell-rule cell) ())
(setf (celi-state cell) @puppet)
(awaken-all (node-cells celli) @nogood))
(t (usurper rebel)
(setf (cell-contents cell) ())
(setf (cell-rule cell) ())
(setf (cell-state cell) @slave)
(decrement (node-contra cell))
(awaken cell @added)
(dolist (c (rep-cells (cell-repository cell)))
(select! (cell-state c)
((@slave) (awaken c @added))
((8king))
((@rebel)
(cond ({equal (cell-contents c) (cell-contents rebel))
(setf (cell-state c) @friend)
(decrement (node-contra cell)))
(t (enqueue (list @node ¢ rebel) scontra-queues))))
((@dupe)
(and (equal (cell-contents (cell-contents c))
{(cell-contents rebel))
(setf (cell-state c) @slave)))
((@puppet @friend)
(lose "Impossible cell state for “S." ¢))))))
(dolist (q fcellsets)
(dolist (f (cdr q))
(forget f cell (car q))))))

TasLEG-31. Forgetting a Friendless King (Very Hairy?).

252 CHAPTER SiX EFPICIENCY

If a king to be forgotten has no fricnds, then several things happen (performed by the function
forget-friendiess-king in Table 6-31). First of ali, it is the king that affect nogood scts
(nogood sets being per-node instcad of per-cell), so if a king disappcears then all the nogood sets of
the node for the disappearing value must be checked. I all the other nodes but one in a nogood set
have their associated values, then the disappearance of this king might uablock an assumption for
the lone node not having its paired value; rules for that node (called the unique-loser in the
codc) must be awakened.

After the nogood awakenings are taken care of, then all the consequences of forgetting the
king must be enumerated. The variable fcellsets is a list of buckets: cach bucket is headed by
a sline of the king. and contains immediate consequences of that slave. ‘Fhese consequences will
be forgotten in turn, but not until the state of the current node has been resolved. (It was much
casicr to write the forget function if it could be assumed that every node encountered was in
a consistent state, rather than in a hall-forgotten stage.) The function forget-consequences
(Tablc 6-30) enumerates the consequences of a cell by examining all the pins of that cell's con-
straint and finding those pins for which the given cell was a trigger. (By the way, this enumeration
of conscquences is also done when a rebel is forgotten—sce Table 6-29.)

While the consequences are being enumerated, it is noted whether there is any rebel. If there
is not, then the king becomes a puppet, and the node loses its value, whercupon @nogood rules
must be given a chance to run. (This would be the obvious place to run @forget rules, but, as
already noted, this is unnccessary.) Otherwise. onc rebel is chosen arbitrarily (the last one scen) to
become the new king. 1t usurps the old king, which becomes a slave. The total number of rebels
for the node is decreased by one. ‘Then every other cell of the node must be examines. Slaves are
awakcened to the new value. Other rebels cither become friends (in which case the count of rebels
is decremented) or rermain rebels (in which case a contradiction with the new king is enqueucd).
Dupes of rebels which are to become friends are turned into slaves; they need not be awakened, as
they already knew of the “correct’™ value. Puppets cannot occur in node which has a value, and by
suppuosition the old king was friendless, so no friends can be encountered.

The function retract (lable 6-30) is now the user interface to the retraction mechanism.
It calls sretract to do the work on the given cell's truc-supplier (in that way the user
can say (retract centigrade) to specify rctraction of the default ccll connected to
centigrade, for example). Then run? is called to allow queuced tasks to be processed.

‘The function change will change the value of a default or parameter cell. I the value is
forbidden by a nogood set, it asks the user before blundering onward. 1t then retracts the ofd value,
installs the new one (by pretending to do a setc-type operation). and then runs the task scheduler.
(This implementation is extremely simple-minded. Although it checks the nogood sets, if the value

is found to be contradictory it docs not immediately enqueue a contradiction on the basis of the
nogood sct (which would not be hard to do). Instead, the computation will truly blunder onward

-

§6.3.23 The New Imiproved Implementation

253

(defmacro the (x y) *(sthe ’,x ,y)}

(defun «the (name con)
(require-constraint con)
{or {Yookup name con) (lose

S has no part named “S." con name)))

(defun lookup (name thing)
(require-coustraint thing)
(lat ((names (ctype-vars (con-ctype thing)))
(cells (con-values thing)))
(let ((n (array-length names)))
(do ((J 0 (+j 1))
((=3n) ()

(and (eq (aref names j) name) (return (aref cells j)))))))

TABLEG-32. Referring 10 Pins Using the.

until the contradiction is rediscovered. [was fecling lazy the day | wrote this code. A more
complicated idea would be to take advantage of the fact that a value was not being retracted, but
merely changing. This would involve running rules while the forget process was only half done,
and would require great care. However, it is certainly what people do when adjusting constrained

valucs.)

6.3.23. ‘The 1ookup lFunctions Scans the Constraint-types's vars Array

The the macro. and its utility function sthe, arc now primarily for uscr interface since the
implementation now deals internally with pin-numbers rather than pin-names. ‘The l1ookup func-
tion scans the vars array of the constraint-type, and if the namc is found returns the corresponding

component of the constraint’s values array.

254 CHAPTER SIX EEFICIENCY

(statisfics-counter equatings "Number of calls to ==")

(defun == (celll cell2)
{require-cell celll)
(require-cell cell2)
(statistic equatings)
(let ((x1 (memq celll (cell-equivs cell2)))
(x2 (memq cel12 (cell-equivs celll))))
(cond ((or x1 x2)
(or (and x1 x2 (eq (cell-repository celll) (cell-repository cell2)))
(lose "EQUIVS lists not consistent for ™S and ~S." celll cell2)))
((not (eq celll cell2))
(push celll (cell-equivs cell2))
(push cel12 (cell-equivs celll)))))
(or (eq (cell-repository celll) (cell-repository cell2))
(let ((rl1 (cell-repository celll))
(r2 (cell-repository cell2))
(cbl (node-boundp celll))
(cb2 (node-boundp cell2)))
(et ({(r (merge-values celll cell2))
{rcells (append (rep-cells rl1) (rep-cells r2))))
(let ((newcomers (if cbl (if cb2 '() (rep-cells r2))
(if cb2 (rep-cells r1) ‘())))
(xr (if (eq r rl1) r2 rl1)))
(setf (rep-cells r) rcells)
(dolist (cell (rep-cells xr)) (setf (cell-repository cell) r,)
(let ((fcoells (alter-nogoods-rep xr r)))
(setf (rep-nogoods r)
(merge-nogood-sets (rep-nogoods r) (rep-nogoods xr)))
(awaken-all fcells @nogood))
(awaken-all newcomers @added) (run?)
‘done)))))

TARLE 6-33. Equating of Cells and Recording Equitings Fxplicitly.

§6.3.24 The New lmproved Iimplementation 255

6.3.24. Equatings are Recorded Fxplicitly and Initialize Links

When an cquating is done (using ==), it must be explicitly recorded cven if it is redundant
by transitivity. (Sec Tablc 6-33.) If this exact cquating between these exact two cells has already
been done, then it need not be recorded twice; otherwise each cell is added to the other's equivs
list. (Therefare the equatings arc recorded redundantly, in that cach cquating is recorded twice,
onc in cach cell. This is mostly for plcasant symmetry and crror-checking, and is not crucial to the
implementation.)

Onice this is done, then the rest of the work is relevant only if the cells are currently of
two different nodes (determined by comparing their repositorics). If they are of ditferent nodes,
then merge-values is called to compare the valucs. In this version, merge-values will not
only compare the values and detect contradictions, but also rearrange the cell links and do other
housekeeping. It returns as its valuc the repository of the node which is to provide the supplier for
the merged node. The rest of == is pretty much as before. ‘The set of newcomers is detcrmined,
the node structure is updated, the nogood scts are merged, cells may be awakened on account
of the nogood scts, and the newcomers arc awakened (they could be awakened right after they
are determined, for awakening merely cnqucucs now; but I was lazy and left the code similar to
previous versions —it doesn't hurt).

¥
!
1
»
:
256 CUAPTER SIX EFFICIENCY ;
— i
I
(defun merge-values (celll cell2) D
(require-cell celll) .
(require-cell celil2) 13
(let {((rY (cell-repository cell)) i
(r2 (cell-repository cell2}))) ! ‘
(cond ((not (node-boundp celll)) i
(let ((s (rep-supplier rl))) [
! (or (eq (cell-state s) Gpuppet) fi
(lose "Valueless node had a non-@PUPPET supplier S." s)) !
(setf (cell-state s) @slave)) ;E
i . (point-1inks-toward celll) D3
! (setf (cell-link celll) cell2) i
r2) |
{((not (node-boundp cell2))
} (let ((s (rep-supplier r2}))) .
(or (eq (cell-state s) @puppet) ‘;
(lose "Valueless node had a non-@PUPPET supplier S." s)) =
(setf (cell-state s) @slave)) 1
{poinl-links-toward cell2) P
(setf (cell-1ink cell2) celll) =
rl) :
(t (let ((r (cond ((eq (node-rule celll) sconstant-rules) rl) ;
((eq (node-rule cellZ) =constant-rules) r2) i
((ancestor celll celi2) rl) y
((ancestor cell2 celll) r2) 2]
((plusp (rep-contra r2)) ri1) .
(t rz))))
(if (eq r r1) y
(merge-two-values r r2 celll cell2)
(merge-two-values r r1 cell2 celI))N)))
Tan:6-34. Merging Values and Arranging Cell Links.
§
The function merge-values (Table 6-34) is responsible for deciding which node will .
provide the repository (and thus the supplicr) for the merged node. Tt is also reponsible for install-
ing a new ce!l link. The new link will always be between the two cells given to ==; this guarantees 3
that links follow paths laid down by cxplicit equatings. My initial impulse was to link the deposcd
supplicr to the surviving supplicr, because then all the other links need not be changed to preserve
the property that the links lead ceventually to the supplicr. Towever, this fails to preserve the]
property of following cxplicit cquatings. 'The solution is that the given cell of the node not provid- ’
ing the repository must usurp its own supplier. “Then link paths from all cells of that node will 'i
} lead to that given cell, and thence to the other given cell, and so to the surviving supplier. ‘The
function point-links-toward is used instcad of usurper (sce Table 6-19 (page 231)) to
avoid changing the cell states (it doesn’t much matter in the cases occuring in ‘Table 6-34, because
the deposed supplicr has been made into a slave).

§6.3.24 The New Improved Implementation 257

(defun merge-two-values (r xr cell xcell)
(Vet ((val (cell-contents (rep-supplier r))))
(cond ((and (zerop (rep-contra xr))
(equal (cell-contents (rep-supplier xr)) val))
(setf (cell-state (rep-supplier xr)) @friend))
(t (ctrace "Contradiction when merging ~S and ~S." cell xcell)
(dolist (c (rep-cells xr))
(select! (cell-state c)
({@slave)
(cond ((not (equal (cell-contents (node-supplier c)) val))
(setf (cell-state c) @dupe)
(setf (cell-contents c) (rep-supplier xr)))))
((@rebe! Rking @friend)
(cond ((equal (cell-contents c) val)
(setf (cell-state c) @friond))
(t (setf (cell-state c) @rebel)
(increment (rep-contra r))
(enqueue (list @node c (rep-supplier r))
scontra-queues))))
((@dupe)
(and (equal (cell-contents (cell-contents c)) val)
(setf (cell-state c) @slave)))
({@puppet) (lose "Puppet ™S in a bound node.” c)))))))
(point-links-toward xcell)
(setf (cell-link xcell) cell)
r)

TABLE 6-35. Merging Two Nodes with Values and Handling Conflicts.

If both cclls have valucs, then one is chosen on the basis of certain criteria, some of them
heuristic. Constants are preferred for surviving kings. Barring that, the avoiding of circular de-
pendency structures is paramount. If that docs not resolve the issue, then nodes with internal
contradictions are less desirable than consistent nodes. Once a repository has been chosen, then the
rest of the work is handed off to merge-two-values (Table 6-35).

If the node whose king is being deposed (represented by xr and xcel1) is fice of con-
tradiction, and the two valucs agree, then the situation is particularly casy and is handled as a
special case. The deposed king becomes a a friend of the surviving king, and his old friends and
slaves automatically become friends and slaves of the surviving king. and that is that. Otherwise
a contradiction has occurred—either the deposed king or one of his rebels niust disagree with the
surviving king. All the cells of the xr node are processed. Slaves to a disagreeing old king become
dupcs. (Note that the phrase (cell-contents (node-supplier ¢)) is used rather than
the scemingly cquivalent (node-value c): this is donc because node-value performs an
important crror-check that must be circumvented here because the node is temporarily in a bad
situation.) Rebels, friends, and the king may become cither friends or rebels, depending on the
values involved. Dupes inay hecome slaves if their associated rebels become friends. When all this
is done. and contradictions have been enqueucd, the cell links are sct up and the chosen repository

returned.

i

P PODTISUNE I WPy PSS

PRy

(defun alter-nogoods-rep (xr r)
(let ((fcells ‘()))
(dolist (bucket (rep-ncgoods xr))
(dolist {nogood (cdr bucket))
(let ((z (assq r (cdr nogood)))
(xz (assq xr (cdr nogood))))
(cond ((null xz)
(lose "Funny nogood set S for bucket S of repository ~S."

xr {car bucket) nogood))

({(null z)

(setf (cdr nogood)

(add-nogood-pair r (cdr xz) (delassq xr (cdr nogood)))))

((equal (cdr z) (cdr xz))

(setf (cdr nogood) (delassq xr (cdr nogood))))

(t (dolist (pair (cdr nogood))

(setq fcells (append (rep-cells (car pair)) fcells))
(let ({buck (assoc (cdr pair) (rep-nogoods (car pair)))))
(or buck (lose "Nonexistent bucket: ~S." pair))
(setf (cdr buck) (delq nogood (cdr buck)))
(or (cdr buck)
(setf (rep-nogoods (car pair))
(delrassq ‘() (rep-nogoods (car pair))))))))))))

i
; 258 CHAPTER S1X EITFICIENCY
|

fcolls))

(defun add-nogood-pair (rep val nogoodlist)
(require-repository rep)
(cond ((null nogoodlist) (1ist (cons rep val)))
((node-lessp (car (rep-cells rep)) (car (rep-cells (caar nogoodlist))))
(cons (cons rep val) nogoodlist))
(t (cons (car nogoodlist) (add-nogood-pair rep val (cdr nogoodlist))))}))

(defun merge-nogood-sets (sl s2)
(cond {({null s1) s2)
({null s2) s1)
((< (caar s1) (caar s2))
(cons (car s1) (merge-nogood-sets (cdr sl) s2)))
((> (caar sl1) (caar s2))
(cons (car s2) (merge-nogood-sets sl (cdr s2)}))
(t (cuns (cons (caar s}) (merge-nogood-buckets (cdar sl1) (cdar s2)))
(merge-nogood-sets (cdr s1) (cdr s2)}))))

(defun merge-nogood-buckets (b1l b2)
(cond ((null bl) b2)
((member (car b1) b2) (merge-nogood-buckets (cdr bt) b2})
(t (cons (car b1) (merge-nogood-buckets (cdr bl) b2)))))

TABLE 6-36. Altering and Merging of Nogood Sets.

'The code for altering and merging of nogood sets is unchanged. because the representation of
nogood sets is the same. For completeness the code is reproduced here in ‘T'able 6-36.

§6.3.24 The New Improved Implementation 259

(defun ancestor (celll cell2)
(require-cell celll)
(require-cell cell2)
(or (8q (cell-repository celll) (cell-repository cell2))
(select! (cell-state celi2)
((8king @rebel) (ancestor-triggers celll cell2))
((@friend) (ancestor-triggers celll (node-supplier cell2)))
((@slave) (and (node-boundp cell2)
(ancestor-triggers celll (node-supplier celli2))))

((@puppet) ())
((@dupe) (ancestor-triggers celll (cell-contents cell12))))))

(defun ancestor-triggers (celll cell2)
(require-cell celll)
(require-cell) cell2)
(do ((tns (rule-triggers (cell-rule cell2)) (cdr tns)))
((nu11 tns) () .
(and (ancestor celll (aref (con-values (cell-owner cell2)) (car tns)))
(return t))))

TABLE 6-37. Tesung Ancestorhood.

The tracing of ancestors by the function ancestor is similar in spirit if not in implementa-
tion to previous versions. ‘The code appears in Table 6-37. Note that a dependency chain might
actually wind through a single node more than once, if the node contains rebels. It might wind in
through a dupe, out through a rebel; in through a slave, out through the king; in through another
dupe, and so on. The low priority accorded to rules triggered by rebels and dupes is intended to
avoid such occurrences, but it can legitimatcly happen.

s

260 CHAPTER SIX Er-rICiENCY

(defun dissolve (cell) (sdissolve cell) (run?))

(defun sdissolve (cell)
(require-cell cell)
(fast-expunge-nogoods cell)
(let ((supplier (node-supplier cell))
(cells (node-cells cell)))
(ctrace “"Dissolving ~{~<;/{ 72,72:;78™7+, T}."
(forlist (c cells) (cell-goodname c)))
(dotist (c cells) :
(setf (cell-lYink c) ())
(setf (cell-equivs ¢) ‘())
(or (eq c supplier)
(let ((r (gen-repository)))
(select! (cell-state c)
((@friend @rebel)
(setf (cell-state c) @king))
((@dupe @slave)
(or {node-boundp supplier)
(setf (cell-state c) @puppet)))
({®king @puppet)
(1ose "QKING or GPUPPET ~S was not the supplier.” c)))
(setf (rep-supplier r) c)
(setf (celli-repository c¢) r)
(push ¢ (rep-cells r)))))
(setf (node-cells supplier) (list supplier))
(setf (node-contra supplier) 0)
(and {(node-boundp supplier)
(let ((fcells ’()))
(dolist {c cells)
(select (cell-state ¢)
((@slave @dupe)
(setf (cell-state c) Qpuppet)
(setq fcells (nconc (forget-consequences c) fcells)))))
(dolist (f Fcells) (forget f)))))
'done)

TABLE 6-38. Dissolving a Node.

6.3.25. Node Disconnections Can he Donc hy Dissolving and Reconnecting

When a node is dissolved, things are & little complicated, because friends and rebels can be-
come kings. On the other hand, the former nonscnse about restoring values to default and constant
cells pleasantly vanishes here. ‘I'he function dissolve (lable 6-38) tears all the cells of a node
apart and generates new repositories for cach one but the supplier. (A supplicr does not have to be
chosen artificially for a valuctess node, because there is always a supplicr, even if only a puppet.)
‘The cel links and recorded cqnivalences are obliterated.)f the node had had a supplicr, then any
cells which had been slaves or dupes will no longer have values, and so arc subject to the forgetting

anbdn.

- —

o -“‘}.

§6.3.25 The New Improved Implementation 261

process. Therefore they are left marked as slaves or dupes until late in the process, until their
conscquences have been recorded for forgetting, whercupon they become puppets.

IR P Sy

el

262 CHAPTER SIX FrFIFICIENCY

(defun detach (cell) (=detach cell) (run?))

(defun edetach (cell)
(require-cell cell)
(dolist (c (cell-equivs cell))
(setf (cell-equivs c) (delq cell (cell-equivs c))))
(setf (cell-equivs cell) ())
(reconstruct-node cell))

(defun disconnect (cell) (sdisconnect cell) (run?))

(defun sdisconnect (cell)
(require-cell cell)
(dolist (¢ (cell-equivs cell))
(setf (cell-equivs c)
(uniong (remg c (cell-equivs cell))
(delg cell (cell-equivs c)))))
(setf (cell-equivs cell) ())
(reconstruct-node cell))

(defun disequate (celll cell2) (sdisequate celll cell2) (run?))

(defun sdisequate (celll cell2)
(require-cell calll)
(require-cell cell2)
(and (eq (cel)-repository celll) (cell-repository cell2))
(let ((x1 (memq celll (cell-equivs cell2)))
(x2 (memq cell2 (cell-equivs celll))))
(cond ((and x1 x2)
(setf (cell-equivs celll) (delq cell2 (cell-equivs celll)))
(setf (cell-equivs cell12) (delq celll (cell-equivs cell2)))
(and (or (eq celll (cell-link cell2))
(eq cell2 (cell-link calll)})
(reconstruct-node celll)))
{({or x1 x2)
(lose "Inconsistent EQUIVS lists for °S and 7S." celll cell2)))))
‘donse)

(defun reconstruct-node (cell)
(require-cell cell)
{(let ({equivs ’())
(srun-flags ()))
{doVist (c (node-cells cell))
(dolist (e (celi-equivs c))
(push (cons ¢ e) equivs)))
(edissolve cell)
(dolist (q equivs)
(== (car q) (cdr q))))
(run?))

TAn:6-39. Detaching, Disconnecting, and Disequating Cells,

Rather than implementing all the special cases for disconnecting, detaching, and discquating,
which arc rather horrendous in their details, for case of implementation I borrowed an idea from

§6.3.25 The New Improved Implementation 263

1.. Peter Deutsch: to change the connections of just a few cells, simply dissolve the whole node and
then re-assert all the cquatings except the ones to be abolished. This carrics a time penalty, but
makes implementation much casier.

Table 6-39 contains the code for detach, disconnect, and disequate. The first is
dcefined to pretend (hat all equatings involving a given node had never taken place, The function
sdetach removes the cell from the equivs lists of all cells it had been cquated to, crases the
cquatings of the given cell. and then calls reconstruct-node to do the dirty work.

The function disconnect is defined to remove itself from the node but otherwise Ieave
the node intact, so it must add new cquatings among all the things to which it had formerly been
conncected, to ensure that they do not become disconnected. The work function sdetach removes
the given cell from equivs lists, set-unions its own cquivs list into its former buddics’ equivs lists,
crascs its own connections, and then calls reconstruct-node.

‘The function disequate must undo any cquating between the two given cells. Nothing
need be done if they had not alrcady been cquated, but if they had then sdisequate deletes
cach from the other’s cquivs list (after some error-checking), but only needs to reconstruct the node
if deleting the equating affected the node’s cell-links structure.

The interesting part is in reconstruct-node. It is defined to take a node whose cquivs
lists have been messed with and make the node structure consistent with those lists. It makes up a
list of equatings to be done, dissolves the node, and then calls == to do cach cquating. (Bccause
the cquatings are recorded redundantly, as described in §6.3.24, twice as many calls as necessary
ar¢ made to ==; but this doesn’t hurt anything.) This is done with srun-flag= bound to ()
to prevent tasks from running until the node is reconstructed—no use in computing values on the
basis of a falsc nctwork structure!

PR SPRSCR

i

264 CHAPTER SIX EEFICiENeY

(defmacro mark-node (cell) +(setf (node-mark ,cell) t))
(defmacro unmark-node (cell) ¢(setf (node-mark ,cell) ()))
(defmacro markp (cell) ¢(node-mark ,cell))

(defun fast-expunge-nogoods (cell)
(require-cell cell)
(fast-expunge-nogoods-mark cell)
(fast-expunge-nogoods-unmark cell))

(defun fast-expunge-nogoods-mark {cell)
(require-cell cell)
(cond ((not (markp cell))
(mark-node cell)
(and (not (null (node-nogoods cell)))
(awaken-all (node-cells cell) €nogood))
(setf (node-nogoods cell) ’())
(dolist (c (node-cells cell))
(and (cell-owner c)
{(doarray (v (con-values (cell-owner c)))
(fast-expunge-nogoods-mark v)})))))

(defun fast-expunge-nogoods-unmark (cell)
(require-cel! cell)
(cond ((markp cell)
(unmark-node cell)
(dolist {c (node-cells cell))
(and (cell-owner c)
(doarray (v (con-values (cell-owner c)))
(fast-expunge-nogoods-unmark v)))))))

TABLE 6-40. Fast Fxpunging of Nogood Information.

When a node is dissolved, this implementation follows previous implementations in simply
expunging all the nogood information in the entire network. Now that premises computes
the precise equivalences involved in a contradiction, it would not be so difficult to add this infor-
mation to a nogood set when it was formed, and to cross-reference nogood scts in cach node
containing an cquivalence mentioned in a nogood sct. ‘Then when a node was dissolved, only
relevant nogood sets need be expunged. However, this involves saving a great deal of information
as data structures, which may not be worth it, and so [have not investigated this technique. Note
that fast-expunge-nogoods-mark (lable 6-40) awakens cvery cell it encounters for reason
@nogood , which can lake a while to process. Fortunately, there are not that many rules which
awaken on that condition.

§6.3.26 The New Improved Implementation 265

(defmacro destroy (symbol) :(sdestroy ’,symbol))

(defun sdestroy (symbol)
(require-symbol symbol)
(and (boundp symbol)
(let ((val (symeval symbol)))
(cond ((cell-p val)
(cond ((and (globalp val) (eq (cell-name val) symbol))
(sdetach val)
(makunbound (cell-id val))
(makunbound symbol))
(t (lose “Illegal re-declaration of ~S." symbol))))
{(constraint-p val)
(cond {(eq (con-name val) symbol)
(forarray (p (con-values val)) (=detach p))
{makunbound symbol))
(t {(lose "Iliegal re-declaration of “S." symbol))))
((or (constraint-type-p val) (repository-p val) (rule-p val))
{lose "lIllegal re-declaration of ~S." symbol))
(t (makunbound symbol}))))

‘done)

Tanik 6-41. Dustroying the Value of a Global Name,

6.3.26. Destraying a Variable or Constraint Detaches It from Everything

At last we may discuss the function sdestroy referred to in §6.3.9. 1t is used by create
and variable (Tablc 6-11 (page 217)) as well as by destroy (lable 6-41). ‘Ihe function
sdestroy takes a LISP symbol, and if that symbol has a valuc examines that value. If the value
is a ccll, then the cell must be global and have the symbol as its name: otherwisc the user must
be trying to destroy one of the gencrated unigue debugging id names. ‘The cell is detached, and
the symbol made to have no valuc (the 11SP function makunbound removes the value from a
symbol). Similarly, if the valuc is a constraint, then if the symbol is the constraint’s name, the
constraint’s pins arc all detached. It is illegal to destroy the name for a constraint-type, or the id for
a repository or rule. A name not used o name any of the system data structures may be destroyed.

& = G s s enr

r—

266 CHAPTER SiX

ELriciENey

(defprim (adder +) (¢ a b)
(c (ab) (+ab)).
(b (ac) (-ca))
(a (bc) (-cb)))

(defprim (multiplier) (c a b)

(c (a) (if (zerop a) 0 @dismiss))

(c (b) (if (zerop b) 0 @dismiss))

(c (ab) (s ab))

(b (a c) (if (and (not (zerop a)) (zerop (\ c a)))
(// ¢ a)
@dismiss))

{a (b c) (if (and (not (zerop b)) (zerop (\ ¢ b)))
(// c b)
@dismiss)))

(defprim (maxer max) (c a b)

(c (ab) (max a b))

(b (a c) (cond ((< ac) c)
({(> a c) @lose)
(t @dismiss)))

(a (b c) (cond ((< b c) ¢)
{((> b c) @lose)
(t @dismiss))))

(defprim (minner min) (c a b)

(c (a b) (min a b))

(b (a c) (cond ({> a c) c)
{(< a c) @lose)
(t Qdismiss)))

{(a (b c) (cond ((> b c) c)
{(< b c) 8lose)
(t @dismiss))))

(defprim (equality =) (p a b)
((p) (if (or (= p 0) (= p 1)) Bdismiss @lose))
{({p &nogoodbeg) () (resolve-among '(0 1)))
(p (a b) (if (= ab) 10))
(b {p a) (if (= p 1) a @dismiss))
(a (p b) (if (= p 1) b @dismiss)))

(defprim gate (p a b)
0) (= p 1)) @dismiss @lose))

({p) (if (or (= p 0)

((p &nogoodbeg) () (resolve-among ‘(0 1)))
(p (ab) (if (= a b) @dismiss 0))

(b (p a) (if (= p 1) a @dismiss))

(a (p b) (if (= p 1) b @dismiss)))

TABIE6-42. Definition of Primitive Constraint-types (i).

§6.3.26 The New Improved Implementation 267

(defprim (lesser <) (a b)
((ab) (if (< a b) Bdismiss Blose))) i

(defprim (lessert <!) (p a b)
((p) (if (or (= p 0) (= p 1)) @dismiss @lose))
((p &nogoodbeg) () (resolve-among ‘(0 1))) i
(p (a b) (if (< ab)10))) ;

8

(defprim (lesser? <7) (p a b)
((p) (if (or (= p 0) (= p 1)) @dismiss @lose))
((p &nogoodbeg) () (resolve-among ‘(0 1)))
(p (a b) (if (< a b) Bdismiss 0)))

(defprim (?lesser 7<) (a b)
((a &nogoodbeg) (b) (if (forbiddenp (- b 1)) Bdismiss (- b 1)))
((b &nogoodbeg) (a) (if (forbiddenp (+ a 1)) @dismiss (+ a 1)))
({(a b) (if (< a b) @dismiss Blose)))) 1
(defprim (?lesser! ?<!) (p a b)
((p) (if (or (= p 0) (= p 1)) @dismiss @lose))
{((p &nogoodbeg) () (resolve-among ‘(0 1))) ﬁ
{(a &nogoodbeg) (b p)
(et ((guess (if p (- b 1) b))) (if (forbiddenp guess) ®dismiss guess))) I
((b &nogoodbeg) (a p)
(let ((guess (if p (+ a 1) a))) (if (forbiddenp guess) @dismiss guess))) }
(p (a b) (if (< ab) 10)))

(defprim (?lesser? 7<?) (p a b) v
{(p) (1if (or (= p 0) (= p 1)) @dismiss @lose)) :
((p &nogoodbeg) () (resolve-among ‘(0 1)))

((a &nogoodbeg) (b p)

(if (and p (not (forbiddenp (- b 1))}) (- b 1) 8dismiss))
((b &nogoodbeg) (a p)

(it (and p (not (forbiddenp (+ & 1)))) (+ a 1) Bdismiss))
(p (a b) (if (< a b) @dismiss 0)))

]
TABLE 643, Definition of Primitive Constraint-types (ii). N ﬂ

268 CHAPTER StX ErEICiENeY

(defprim (?maxer ?max) (c a b)
(c (a b) (max a b))
({c &nogoodbeg) (a) (if (forbiddenp 2) a Rdismiss))
((c &nogoodbeg) (b) (if (forbiddenp b) b @dismiss))
(b (a c) (cond ((< a c) c)

({> a c) @lose)

(t @dismiss)))
(a (b c) (cond ((< b c) c)

((> b c) @ose)

(t Qdismiss))))

(defprim {?minner ?min) (¢ a b)
- (¢ (a b) (min a b))
((c &nogoodbeg) (a) (if (forbiddenp a) a @dismiss))
((c &nogoodbeg) (b) (if (forbiddenp b) b @dismiss))
(b (ac) (cond ((> a c) ¢)

((< a c) Glose)

(L @dismiss)))
(a (b c) (cond ((> b c) ¢)

((< b c) @lose)

(t @dismiss))))

(defprim signum (s a)
({s) (if (or (= s -1) (= s 0) (= s 1}) @dismiss @lose})
({s &nogoodbeg) () (resolve-among ‘(-1 0 1)))
(a (s) (if (zerop s) 0 @dismiss))
(5 (a) (cond ((plusp a) 1) ((minusp a) -1) (t 0))))

(defprim (assumption assume) (pin)
({pin &nogoodbeg) () (if (forbiddenp +infos) @dismiss sinfos)))

(defprim oneof (pin)
({(pin &nngoodbeg) () (choose-from =infos))
({(pin) (if (member pir «infos) @dismiss @lose)))

(defprim firstoneof (pin)
({pin &nogood) () (choose-from sinfos)))

Tama: 6-4d, Definition of Primitive Constraint-types (iif).

6.3.27. Primitive Constraints Are Uniformly Defined by defprim

In Chapter Five, the definition of most primitive constraints was done via the defprim con-
struct, but the “strange™ constraint-types assumption, oneof, and Firstoneof were defined
“manually”, that is, by jerry-rigging the rule and constraint-type structures. Here we have a more
general de fprim that can accommodate rules which depend on nogood information.

The format of rule definitions was discussed in §6.3.13. Each rule specification has an optional
output pin-name and keywords, a list of trigger pin-names, and a body. ‘The definitions of adder,
multiplier, maxer, minner, equality, and gate appear in Vable 6-42. They arc preuty

il

o

P-—'-. T — . | o

§6.3.27 The New mproved Implementation 269

much as in previous versions, with three except:ons. One 15 that setc and contradiction
arc not used, but instead cither an integer or one of the two flags @lose and @dismiss is
computed. Another is that equality and gate cach have a new rule, the second one. The first
rule of cach states that p must be 0 or 1, or else a contradiction occurs. The second rule says that if
one of the two values 0 and 1 is forbidden by a nogood sct. then the other one can be deduced and
tentac:vely asserted. (The function resolve-among checks the nogood sets. Tt does not realty
do resotution—it merely checks whether one unique value of aset is possible. and if so asserts it:
‘it is the value which will cause resolution if it fails.) The third exception is that if in place of the
naine is a list of two symbals. then the first is the name and the second is the ctype-symbot to
be used by tree-Fform when extracting an algebraic expression from the network. If no separate

ctype-symbol is supplied, the name is used. (This feature is primarily to make the output
pretticr. One might ask why the name is not always used. for if one wants adders o be called “+”
in algebraic forms one could always just use the name + instead of adder. The answer is that
the name is used for interacting with the 1sp system, and the 11SP system already uses the name
+ for something clse. Thus this feature is a compromise with LISP, yiclded in exchange for all the
advantages using 11SP provides.)

‘Table 6-43 defines some new primitive constraint-types. Definitions for them appeared in §6.1.
A lesser device enforces a numerical less-than relationship between its two pins a and b—its
rule signals a contradiction if this is not so. The ?1esser device is similar, but also will try a
heuristic guess at the value of one pin if the other is known. The first two rules are assumption
(&nogoodbeg) rules which define the heuristic that in the absence of better information the two

pins might as well have adjacent integers as values. This device is uscful for expressing geometrical
spacing constraints, for example. One might specify that one object must be somewhere to the left
of thave an x-coordinate less than that of) another object; then in the absence of better information
they will be right next to cach other. The form forbiddenp is a predicate true ifl the given value
is disallowed by cxisting nogood sets.

The device types lesser! and lesser? arc to lesser as equality and gate arc '
to ==, in cffect. Type lesser! provides an extra pin p which specifies whether the Yesser
relationship between a and p s true or fulse. Type lesser? uscs not a biconditional but an
implication; if p is 1 then the 1esser relationship holds, butif p is 0 the relationship may or
may not hold. ‘The device types ?Vesser! and //Messer! have the same relationships to the type i
?1esser. (I have found that having three such versions of almost any constraint-type is uscful. A

i morc advanced constraint language might just automatically provide every constraint-type with two
f extra pins p? and p! which are initially assumed to be L. This would be onc way for a constraint

270 CHAPTER SIX EFFICIENCY

{defun assume (value)
(et ({(a (gen-constraint assumption (gen-name ‘assumption))))
(setf (con-info a) value)
(the pin a)))

(defun oneof (valuelist)
(let ((a (gen-constraint oneof (gen-name ‘oneof))))
(setf (con-info a) valuelist)
(the pin a)))

(defun firstoneof (valuelist)
(let ((a (gen-constraint firstoneof (gen-name ‘firstoneof))))
(setf (con-info a) valuelist)
(the pin a)))

TAm 6045, The assume, oneof, .und firstoneof Constructs.

nctwork to control itself—by turning the p? pin on and off to tirn constraints on and off.)

The constraint-types ?maxer and ?minner (Table 6-44) are like ?1esser—cach is willing
to makc a gucess on the basis of partial information. In this case, if onc of a and b is known and
the other not, then ¢ is assumed to be the same as the known pin.

‘The constraint-type signum illustrates a situation where a pin is confined to a value sct of
more than two clements. The pin s must be onc of —1, 0, or 1, reflecting the sign of the pin
a. The first rulc checks the value space: the sccond allows deduction of a value if the other two
arc forbidden; the third deduces @ = 0 from s = 0; and the fourth is the obvious definition of
signum as a function of a.

After these odd definitions, those of assumption, oneof, and firstoneof are not very
surprizing. The onc rule for assumpt ion says that the rule need not be invoked unless the out-
put pin has no valuc, in which casc the assumed value is asscrtcd unless forbidden. The first rule for
oneof chooses among the possibilities and returns onc (choose-from is likc resolve-among
cxcept that it always returns some one choice or elsc performs resolution; resolve-among will
fail to rcturn a choice unless it is forced). The second rule checks that a value computed clsewhere
is in its value sct.

The one rule for firstoneof is a &nogood rules rather than a &nogoodbeg rule. That
mecans that it will let a nogood sct stop a value, but not the output pin. It chooses a value on the
basis 0f nogoaod scts alone, and then returns it. 1f the output pin alrcady has a value, it can jolly well
cause a contradiction and create a nogood sct, whereupon the rule, when run again, will then admit
a diffcrent choice.

5. Luc Stecls provides a similar facility in his constraint system [Steels 1980). where by convention cvery constraint
has an extra “cnable” pin. The name of this pin is the name of the constraint itself, and so he speaks of using the
constarint itself as a valuc. 1 view the constraint and its cnable pin as distinct things, and incan somcthing clse by
using a consiraint as a value. ‘Lhis is discussed in the Conclusions chapter.

-

§6.3.27 The New Improved Implementation PAAN

The implementation of the assume, oneof, and firstoneof constructs is pretty much
as in Chapter Five, cxcept that the rules involved need not be explicitly awakened; the funciion
gen-constraint (Table 6-11 (page 217)) takes care of that.

2N

CUAPTER SIX

ELFICiiNCY

(defmacro defprim (namespec vars . rules)
(let ((name (if (atom namespec) namespec (car namespec)))
(symbol (if (atom namespec) namespec (cadr namespec))))
s(progn ‘compile

(declare (special ,name))
(setq ,name (make-constraint-type))
(setf (ctype-name ,name) ’,name)
(setf (ctype-symbol ,name) ‘,symbol)
(setf (ctype-vars ,name) (array-of / vars))
(setf (ctype-added-rules ,name) (array-n ,(length vars)))
(setf (ciype-forget-rules ,name) (array-n ,(length vars)))
(seif (ctype-nogood-rules ,name) (array-n ,{length vars)))
(defmacro ,(symbolconc name "-VARNUM") (varname)
s(posq ’,varname ’,’,vars))
(defmacro ,(symbolconc name "-BINDCFLLS") body
‘(let ,’,(forlist (var vars)
*(,(symbolconc var "-CELL")
(aref (con-values smes) ,(posq var vars))))
+@body))
,8(do ((r rules (cdr r))
(bit 1 (1sh bit 1))
(defs 7() (cons ¢(defrule ,name ,bit
s@(if (nul) (cddr (car r)))
(cons () (car r))
(car r)))
defs)))
((null r) defs))

‘{,name primitive))))

TABLE 6-46. Definition of Primitives.

§6.3.27 The New Improved Implementation 273

(defprim gate (p a b)
((p) (if (or (= p 0) (= p 1)) Bdismiss @lose))
((p &nogoodbeg) () (resolve-among ‘(0 1)))
(p (ab) (if (= ab) @dismiss 0))
(b (p a) (if (= p 1) a @dismiss))
(a (p b) (if (= p 1) b @dismiss)))

expands into:

(progn ‘compile

. (declare (spocial gate)) r
(selq gate (make-constraint-type))
(setf (ctype-name gate) ‘gale)
(setf (ctype-symbol gate) ‘gate)
(setf (ctype-vars gate) (array-of '(p a b))
(setf (ctype-added-rules gate) (array-n 3))
(setf (ctype-forget-rules gate) (array-n 3)
(setf (ctype-nogood-rules gate) (array-n 3)
(defmacro gate-varnum {varname)

s(posq ’',varname ‘(p a b)))
{defmacro gate-bindcells body

‘(let ((p-cell (aref (com-values =mes) 0))

(a-cell (aref (con-values smes) 1)) L
(b-cell (aref (con-values smas) 2)))
»@body))
(defrule gate !5 a (p b) (if (= p 1) b @dismiss))
(defrule gate 8 b (p a) (if (= p 1) a @dismiss))
(defrule gate 4 (ab) (if (= a b) @dismiss 0))
2
1

)

)
)

p
(defrule gate (p &nogoodbeg) () (resolve-among ‘(0 1)))
(defrule gate () (p) (if (or (= p 0) (= p 1)) @dismiss Rlose))
‘(gate primitive))

Taw 1:6-47. Expansion of the Dcfinition of gate.

Table 6-46 shows the new definition of the 11sP macro defprim. Among other things, it
assigns id-bits to cach of the rules (cach id-bit is a distinct power of two). 1t also defines two macros
name-varnum and name-bindcell, references to which will be generated by defrule. One

converts a pin-name into a pin-number, and the other generates the binding of names of the forn 1
pin-name-ce11 to the corresponding cells, which is done in every rule. Using macros in this
way instead of a global data basc causes the information to be transmitted correctly at cither 1ISP i

compile time or 11SP interpretation time, ‘Table 6-47 shows the 11SP code into which the defprim
definition of gate expands.

2714 CuapPrEr SIX EreicieNey
(defmacrd defrule (typename bit outputl-stuff trigger-names body)
(let ((rulename (gen-name typename ‘rule))
{ctype (symeval typename}))
(output-name (cond ((null output-stuff) ())
((atomn output-stuff) output-stuff)
(t (car output-stuff))))
(keywords (cond {((atom output-stuff) ()) i
(t (cdr output-stuff)))))
(require-constraint-type ctype)
*(progn ‘compile
(declare (special ,rulename))
(defun ,rulename (smes)
(lel ((#rules ,rulename)
(*infos (con-info smes)))
(,(symbolconc typename "-BINDCLLLS")
(let ((soutvars ,(if output-name
(symbolconc output-name "-CELL")
)
,@(foryist (var trigger-names) |
s(,var (cell-value ,{symbolconc var "-CLLL"))))) ‘
sbody)))) ¥
(let ((rule (make-rule)))
(setq ,rulename rule)
(setf (rule-code rule) ‘,rulename)
(setf (rule-ctype rule) ,typename)
(self (rule-outvar rule)
,(if output-name
¢(,(symbolconc typename "-VARNUM") ,output-name)
M)
(setf (rule-triggers rule)
(1ist ,@(forlist (var trigger-names)
¢(,{symbolconc typename "-VARNUM") ,var))))
(setf (rule-bits rule)
,{(+ (if (memq ’'&nogood keywords) @rule-nogood 0)
(if (memq '&nogoodbey keywords) @rule-nogoodbeqg 0))) p
(setf (rule-id-bit rule) ,bit) 1
,@(and output-name
+((push rule (aref (ctype-forget-rules ,typename) 13
{,(symbolconc typename “-VARNUM")
,output-name)})))
,8(forlist (var trigger-names)
¢(push rule (aref (ctype-added-rules ,typename)

(,{symbolconc typename "-VARNUM") ,var))))

,8(and (or (memq ‘&nogood keywords) (memq ’‘&nogoodbeg keywords))
+({push rule (aref (ctype-nogood-ruies ,typename) ‘
(,(symbolconc typename "-VARNUM")

,output-name)))))) '

'(,typename rule)))) F

®

| ey
W,

o w-.‘

Al

TABLE 6-48. Definition of Rules, O

Tablc 6-48 shows the new definition of the 11SP macro defrule. It arranges to create the rule
data structure and cataloguc it in the constraint-type’s rules tables.

%
;
| 9
;

B R e 4 sereems o . e N

§6.3.27 The New Improved inplementation 275

(defrule gate 2 (p &nogoodbeg) () (resolve-among ‘(0 1)))
expands into:

(progn ‘compile
(declare (special gate-rule-69))
(defun gate-rule-69 (smes)
(let ((srules gate-rule-69)
(#infos (con-info smes)))
(gate-bindcells (let ((routvars p-cell)) (resolve-among ‘(0 1))))))

(tet ((rule (make-rule)))

{(setq gate-rule-69 rule)

(setf (rule-code rule) ’‘gate-rule-69)

(setf (rule-clype rule) gate)

(setf (rule-outvar rule) (gate-varnum p))}

(setf (rule-triggers rule) (list))

(satf (rule-bits rule) 2)

(setf (rule-id-bit rule) 2)

(push rule (aref (clype-forget-rules gate) (gate-varnum p)))

{push rule (aref (ctype-nogood-rules gate) (gate-varnum p))))
‘{gate rule))

e

(defrule gate 1 () (p) (if (or (= p 0) (= > 1)) @dismiss @lose))
expands into: -

(progn ‘compile
(declare (special gate-rule-70))
(defun gate-rule-70 (=mes)
(let ((=rule* gate-rule-70)
(sinfoe (con-info smes)))
(let ((p-cell (aref (con-values smes) 0))
{(a-cell (aref (con-values smes) 1))
{(b-cell (aref (con-values smes) 2)))
(let ((soutvare nil)
(p (cell-value p-cell)))
(if (or (= p G) (= p 1)) @dismiss @lose)))))
(let ((rule (make-rule)))
(setq gate-rule-70 rule)
(setf (rule-code rule) ’‘gate-rule-70)
(setf (rule-ctype rule) gate)
(setf (rule-outvar rule) nil)
(setf (rule-triggers rule) (list (posq ‘p '(p a b))))
(setf (rule-bits rule) 0) \
(setf (rule-id-bit rule) 1) :
(push rule (aref (ctype-added-rules gate) (posq ‘p '(p a b)))))
'{gate rule))

TABLE 0-49. Expansions of the Definitions of Two gate Rules. L

== g s np——

P N pwrs

o -

g T AT o

276 CHAPTER SIX FERIciENey

(defmacro forbiddenp (val) s(sforbiddenp ,val soutvars))

(statistics-counter forbiddenp-sets “"Number of nogood sets checked")
(statistics-counter forbiddenp-pairs "Number of nogood set pairs checked”)

(defun sforbiddenp (val soutvars)
(do-named outer-loop
{(x (cdr (assoc val (node-nogoods soutvars})) (cdr x)))
{((puld x) (}))
(statistic forbiddenp-sets)
(do-named inner-loop
((c (cdar x) (cdr c)))
((null c)
(return-from outer-loop (car x)))
(statistic forbiddenp-pairs)
(and (not (eq (caar c¢) (cell-repository soutvars)))
(or (not (eq (cell-state (rep-supplier (caar c))) @king))
(not (equal (cell-contents (rep-supplier (caar c)}) (cdar c)})))
(return-from inner-toop))}))

TABLE 6-50. Checking Whether a Value is Forbidden by o Nogood Set.

Table 6-49 shows the cxpansions of two of the rules for the gate constraint-type. The first
onc does not have the vecurrences of gate-bindcells and gate-varnum cxpanded, and the
sccond one docs. (The 11sp function posq treats its second argument, a list, as a zero-origin array,
and returns the index into that arcay of tic tirst occurrence of its first arguinent, using an eq test.)

6.3.28. Checking the Nogood Sets Can Advise Rules about Forbidden Values

The utility macro forbiddenp used by many of the primitive’s rule definitions is defined in
Table 6-50. 1t calls the function sforbiddenp on the specified value and the cell for the output
pin of the rule. (This is yet another example of providing a function for internal usc and a macro
that makes the interface pretty in common situations (rule definitions in this case).) 1t is essentially
the cheek in the old code for assumption-rule in ‘Fable 5-2 (page 143). 1f a nogood sct can
be found that forbids the old value, it is a “killer™ and is returned; if none is found then () is
returned.

In a similar manner the macros choose-Ffrom and resolve-among interface to funciions
named *choose-from and sresolve-among. Each of them is based on the outer loop of the
old oneof-~rule in Tablc 5-3 (page 144). Each of them tests elements from the list of possibilities
using forbiddenp, and for cach forbidden value adds the killer o an accumulating list. Fach
of them signals a contradiction of none of the possibilitics work (and then returns @dismiss, not
@1ose—the contradiction is enqueucd by signal-nochoice, and itis not correct to blame this
contradiction on the rule which mvoked a macro, because it is 2 @resolut ion-type contradic-
tion). The difference between them is that if a valid possibility is found schoose-from rcturns it

SN - T PO

N

~

A dncn

e

§6.3.28 The New Improved Implementation m

immediately, whercas sresolve-among checks them all, and returns @dismiss unless there is
a unique choice.

YA

g

adalte

DOV, ~EW

278 CHAPTER SIX ErAaciENeY

(defmaéro choase-from (choices)
s(*choose-from ,choices =outvars))

{(defun schoose-from (choices soutvars)
(do ((v choices (cdr v))
(killers “()))
((rull v)
(signal-nochoice choices soutvars killers)
@dismiss)
(let ((ng (forbiddenp (car v))}))
(if ng (push ng killers) (return {car v))))))

{(defun signal-nochoice (choices soutvars killers)
{ctrace "Al11 of the values “S for ~S are no good."
choices
(cell-goodname soutvars))
(let ({(losers ‘()))
(dotist (killer killers)
(dolist (x (cdr killer))
(or (eq (car x) (cell-repository soutvars))
(or (assq (rep-supplier (car x)) losers)
(push (cons (rep-supplier (car x)) {cdr x)) losers)))))
(enqueue (cons @resolution losers) scontra-queues)))

(defmacro resolve-among (choices)
t(sresolve-among ,choices soutvars))

(defun sresolve-among (choices soutvars)
(do ((v choices (cdr v))
{(winners ’())
(killers 7()))
((null v)
(cond ({(null winners)
(signal-nochoice choices soutvars killers)
@dismiss)
{((null (cdr winners)) (car winners))
(t @dismiss)))
(1et ((ng (forbiddenp (car v))))
(if ng (push ng killers) (push (car v) winners)))))

TanLi: 6-51. Filtering a Sct of Possibilities Using Nogood Sets.

The functions choose-from and resolve appear in Table 6-51. So does the functiun
signal-nochoice, which performs the resolution step on a sct of killer nogood scts. It producces
a new resolvent set, and enqucucs a @resolut ion-type contradiction task.

§6.3.29 The New Improved Implementation 2719

(defun why (cell)
{require-cell cell)
{cond ((not (node-boundp cell))
(format t "7%;”S has no value."” (cell-id cell))
(Yet ((flag ()))
(dolist (c (node-cells cell))
{and (cell-owner c)
(dolist (rule (aref (ctype-forget-rules
(con-ctype (cell-owner c)))
(cell-name c)))
(let ((trigger-names
(forlist (tr (rule-triggers rule))
(aref (ctype-vars (con-ctype (cell-owner c))) tr))))
(format t "~:[1 could compute it™;~
;or”)”
flag)
(setq flag t) .
(format t "7%; from “:[T2«7;pin™P T{7S7t, 7} of T]~
~S by rule 7S"
trigger-names
(length trigger-names)
trigger-names
(con-name (cell-owner c))
rule)))))
(format t "~:[I don’t have any way to compute it.”;.7]" flag)))
(t (format t "~%;The value ~S is in ~S because "
(cell-value cell) (cell-goodname cell))
(select! (cell-state ceoll)
((8king @friend @rebel)
(why-how cell})
((@slave)
(format t "it is connected to ~S"%; and "
(cell-goodname (node-supplier cell)))
(why-how (node-supplier cell)))
((@dupe)
(format t "it is connected to "S§7%; and "
(cell-goodname (cell-contents cell)))
(why-how (cell-contents cell)))
((@puppet) (lose "Bound node has a @PUPPET cell “5." cell)))))
'q.e.d.)

TABLE 6-52. Implementation of the why Function. __J

6.3.29. ‘The why l'unction Prints Values Forhidden by Nogood Sets

The new dcfinition of the why function appears in Table 6-52. As before, it divides into two
cascs depending on whether or not the given node has a value. it docs, then it dispatches on the
cell-state of the given cell to determine just how it got its value. Note that why and all the other
explanation functions are carcfully written to be useful on contradictory networks—they handle
rebels and dupes properly. ‘They don’t require consistency, merely well-foundedness.

EgpCEe ey g

280 CHIAPTER SIX EFFICIENCY

(defun why-how (s)
(if (null (cell-owner s))
(format t "that is a constant.")
(format t "“<™%; 70,72:;7S computed it™>7<"%; 70,72:; using rule “S™>~
TO["%; from: T:{7S (TS)T:[Te7T; = TSTYT:r, T)T1L
(cell-owner s)
(cell-rule s)
(forlist (tr (rule-triggers (cell-rule s)))
(let ((cell (aref (con-ctype (cell-owner s)) tr)))
(Vist (cell-id cell)
(aref (ctype-vars (con-values (cell-owner s))) tr)
(node-boundp cell)
(cell-value cell))))))
(print-forbidden-values s))

(defun print-forbidden-values (s)
(and (node-boundp s)
(or (bit-test @rule-nogood (rule-bits (cell-rule s)))
(bit-test @rule-nogoodheg (rule-bits (cell-rule s5))))
(format t "“@[™%;Nogood sels currently forbid these values: ~{~S7t,7} . ~]"
(mapcan #/(lambda (x) (and (+forbiddenp (car x) s) (1ist (car x))))
(node-nogoods s)))))

(defun cell-goodname (cell)
(require-cell cell)
(cond ((globalp cell) (cell-name cell))
((or (eq (cell-rule cell) sconstant-rules)
(eq (cell-rule cell) sdefault-rules)
(eq (cell-rule cell) sparameter-rules))
(list (cell-name cell) (cell-contents ceil)))
(t (Vist 'the (aref (ctype-vars (con-ctype (cell-owner cell)))
. (cell-name cell))
(con-name (cell-owner cell))))))

TABLE 6-5Y. Fxplaining a True-Supplicr. and Printing Forbidden Valucs,

e e A

f
!

§6.3.29 The New Imiproved Implementation 281

The function why-how (Tablc 6-53) prints the constraint, rule. and triggers that were respon-
sible for a computed valuc, and then calls print-forbidden-values w check for any values
that arc forbidden by nogood sets. Of course, the set of all possible values is infinite, being all
the integers, but print-forbidden-values simply maps over the buckets of the nogoods
component of a node, and for cach bucket valuc checks to see whether it is forbidden. After all, a
value cannot be forbidden if there is no bucket to hold a killer for it!

. The function cell-goodname tries o pick a pretty name for a cell for printing purposcs.
This version never uses the cell-id, which the user isn't ever supposed to see anyway.
' As an example, consider this interaction (with tracing turned oft):

(test) 1set up a temperature conversion network
DONE

(== fahrenheit (default -40))

DONE

(why centigrade)

;The value -40 is in CENTIGRADE because it is connected to (THE B MULT)

i and <MULT:MULTIPLIER> computed it using rule <B¢MULTIPLIER-RULE-5(A,C)>
: from: CELL-27%1 (A) = 9, CELL-269 (C) = -360.

Q.E.D.

As another example, suppose that the network for the four gueens problem of §5.4.2 has been
run in the new system.

(why q0)

;The value 1 is in Q0 because it is connected to (THE PIN ONEOF-250)
H and C(ONEQOF-250:0NEOF> computed it

; using rule <(PIN &NOGOODBEG)+ONEOF-RULE-44()>.

;Nogood sets currently forbid these values: 0.

Q.£.D.

(why q1)

;The value 3 is in Q1 because it is connected to (THE PIN ONEOF-253)
H and <ONEOQOF-253:0NEOF> computed it

: using rule <(PIN &NOGOODBEG)«ONEOF-RULE-44()>.

;Nogood sets currently forbid these values: 0,1,2.

Q.E.D.

Of course, a value is forbidden for qa only when it is assumed that all the other q/ are fixed.

g

Rr=ronte—

T

282 CHAPTER SIX EFICIENCY

(defun why-ultimately (cell)
(require-cell cell)
(cond ((not (node-boundp cell))
{format t "~%;7S has no value." (cell-id cell))
(format t ""@[Perhaps knowing the value of ~
~("<%; T:16,72:7S T>Ttar ~)would help.~]"
(forlist (c (delq cell (desired-premises cell))) (cell-name c))))
(t (format t ""%;The value ”S is in S because "
(cell-value cell) (cell-goodname cell))
(select! (cell-state cell)
({(@king @friend Grebel) (why-ultimately-how cell cell))
((@slave)
(format t "it is connected to "S7%; and "
(cettl-goodname (node-supplier cell)))
(why-ultimately-how cell (node-supplier cell)))
{(@dupe)
(Format t "it is connected to "S7Y%; and * (cell-contents cell))
(why-ultimateiy-how cell (cell-goodname (cell-contents cell))))
{(Gpuppet) (lose "Bound node has a @PUPPET cell 7S.” cell)))))

‘q.0.d.)

(defun why-ultimately-how (cell s)
(if (null (cell-owner s))
(format t "that is a constant.")
(multiple-value-bind (premises defaulits params nogoods trees 1inks})
(fast-premises cell)
(format t "it was ultimately derived”
“@[from:~:{"%: 7S7@ == "S77:1,7}7].7
@[~%.These connections were involved:™
T % 7§ == ST ,T}TY"
(forlist (p premises)
(cons p (mapcan #'(lambda (c)
(and (globalp c) (list (cell-name c))))
(node-cells p))}))
(forlist (1 1links)
(list (cell-goodname (car 1}} (cell-goodname (cdr 1))})))))

TABLE 6-54. Implementation of why-ultimately.

6.3.30. ‘Thewhy-ultimately Function Prints Cell-Link Information

The function why~ultimately (Table 6-54) has been split into two functions in the same
way that why was. The function why-ultimately-how prints not only the premises which
support the quantity asked about, but also all the cquating connections traversed by the computa-
tion (using the Tinks information computed by premises). As an cxample, consider this
explanation for the temperature conversion network:

(test) ;set up a temperature conversion network

DONE
(== fahrenheit (default -40))

P U S

,.-....,..TVM,.___
T P RV

. il

o

, ey~

]
H

§6.3.30 The New Improved Implementution

283

(defun desired-premises (cell)
(require-cell cell)
{progl (desired-premises-mark cell) (desired-premises-unmark cell)))

(defun desired-premises-mark (cell)
(require-cell cell)
{(cond ((and (not (node-boundp cell))
(not (markp cell)))
(mark-node cell)
(do ({c (node-cells cell) (cdr c))
(p ’() (nconc (if (null (cell-owner (car c)))
(and (globalp (car c)) (list (car c)))
(desired-premises-constraint (car c})))
P)))
((rul1) p)))))

(defun desired-premises-constraint (cell)
(require-cell cell)
(et ((p '()))
(dolist (rule (aref (ctype-forget-rules (con-ctype (cell-owner cell)))
(cell-name cell)))
{dolist (tr (rule-triggers rule))
(setq p (nconc (desired-premises-mark
(aref (con-values (cell-owner cell)) tr))
P))))
)

(defun desired-premises-unmark (cell)
(require-cell cell)
(cond ((markp cell)
{(unmark-node cell)
(dolist (c (node-cells cell))
(and (cell-owner c)
(doarray (pin (con-values (cell-owner c)))
(desired-premises-unmark pin)))))))

TABLE 6-55. Locating Desired Premises for an Unbound Cell,

DONE
(why-ultimately centigrade)
;The value -40 is in CENTIGRADE because it is connected to (THE B MULT)
; and it was ultimately derived from:
; <CELL-292 (DEFAULT-290) KING -40> == FAHRENHEIT.
;These connections were involved:
; (THE B OTHERMULT) == (CONSTANT 5),
: FAHRENHEIT == (DEFAULT-290 -40),
; (THE C ADD) == FAHRENHEIT,
: (THE B ADD) == (CONSTANT 32},
; (THE A OTHERMULT) == (THE A ADD),
; (THE C MULT) == (THE C OTHERMULT),
; (THE A MULT) == (CONSTANT 9),
: CENTIGRADE == (THE B MULT).
Q.E.D.

|
L
5
‘ri
£
284 CHAPTER SIX Ericiency i E
|1
(defun what (cell) P
(require-cell cell)
(cond ({not (node-boundp cell))
(format t "™%:;7S has no value. [can express it in this way:~
T4, TS = TSR
(cell-id cell) (tree-form cell t}))
(t (format t ""%;The value S in 7S was computed in this way:™)
e 3 “§ € 787" r
(cell-value cell) (cell-goodname cell) (tree-form cell)))) :
(print-forbidden-values (cell-true-supplier cell)) :
‘okay?} 1
(defprop assumption disliked treeformpref)
(defprop oneof disliked treeformpref)
(defprop firstoneof disliked treeformpref)
(defmacro nummark (cell) “
‘(setf (cell-mark ,cell) P
(if (numberp (cell-mark ,cell)) (+ (cell-mark ,cell) 1) 1}))) .?
(defmacro unnummark (cell) ¢(setf (cell-mark ,cell) ())) T@
(defmacro nummarkp (cell) ¢(numberp (cell-mark ,cell}}) -
(defmacro singlenummarkp (cell) +(equal (cell-mark ,cell) 1)) J!
{defun tree-form (cel) &optional (shallow ())) |3
(require-cell cell) 5y
(nummark (celi-true-supplier cell)) ﬂl
(prog2 (tree-form-trace cell shallow) g,
(tree-form-gather cel) shallow) ‘,
{tree-form-unmark cell}))
TARLE6-56. Implementation of what. i
1
3
The code for desired-premises (lable 6-55) is cssentially as before, with minor -
modifications for the new data structures involved. B
1
6.3.31. ‘The what Function Uses the Generalized Algebraic Form 1
The only change to the function what (Table 6-56) is the addition of a call to the function
print-forbidden-values (dcfincd in Table 6-53). All of the interesting changes arc in the
function tree-form and its cohorts. '
[couldn’t resist using property lists for something (this is LISP code, after all), and so F
the property treeformpref on the namc fo a constraint-type indicates whether that type
of constraint may be used to express the value of a cell. Possible values arc disliked R
and forbidden, though forbidden isn't uscd here. ‘Types assumption, oneof, and '
firstoneof arc disliked; they are not used in algebraic expressions if there is any better alterna- .

tive.

§6.3.31 The New Improved Inplementation 285

(defun tree-form-trace-set (owner names shallow)
(require-constraint owner}
(do ((n names (cdr n))
{queue ‘() (nconc {tree-form-tag (aref (con-values owner) (car n))) queue)))
((null n) (dolist (c queue) (tree-form-trace ¢ shallow))})))

(defun tree-form-tag (cell)
(require-cell cell)
(let {(s (cell-true-supplier cell}))
(and (not (progl (nummarkp s) (nummark s)))
(1ist cell})))

1 (defun tree form-trace (cell shallowj

(require-cell cell)

(cond ((node-boundp cell)

(let ((s (cell-true-supplier cell)))
(cond ((cell-owner s)
(or shallow
{(tree-form-trace-set (cell-owner s)
(rule-triggers (cell-rule s))
shallow)))
(t (nummark s})))) ;crock
(t (let {({(cells (node-cells cell)))
(usurper (cr (if shallow
(or (tree-form-shallow cell cells)
(tree-form-deep cell cells shallow))
(or (tree-form-deep cell cells shallow)
(tree-form-shallow cell cells)))
(progn (and (cell-owner cell)
(tree-form-trace-set
(cell-owner cell}
(fortimes (j (array-length
{con-values
(cell-owner cell))))

3)
shallow))
cell)))))))

TABLE 6-57. Tracing Out an Algebraic Expression in the Network.

‘e code for tracing out an expression (Table 6-57) is not changed much. 1t operates on the
truc-supplier of the given cell if it is bound. If the node has no value, then any supplicr will do,
and the existing puppet could be used. However, tree-form-trace trics as before o choose
a “good” artificiat supplicr and lcts it usurp the cxisting puppet. (It is somewhat of a “no-no” to
have a probing wtility such as what alter the network being probed—it violates the principle that
debugging tools should avoid altering the object being debugged in unpredictable ways. This is
a very tiny violation, though. If the node structure is sound. it docsn’t matter which cell is the

puppct)

e e emurr—————

AD-AD96 556 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE=-ETC F/6 9/2
THE DEFINITION AND IMPLEMENTATION OF A COMPUTER PROGRAMMING LAN==ETC(U)
AUG 80 G L STEELE NOOOI“-BO-C-0505

UNCLASSIFIED AI-TR=595

END
n;n[n
oTic

5 286 CHAPTER SIX EEFICIENCY

(defun tree-form-shallow (cell cells)
‘ (do {(c cells (cdr c)))
| ((nu11 ¢) ()
(and (not (eq (car c) cell))
(globalp (car c))
(return (car c)))))

(defun tree-form-deep (cell cells shallow)
(do ({z cells (cdr z))
(any ()))
((rul z) any)
{and (not (eq {car z) cell))
(cell-owner (car z))
(let ((pref (get (ctype-name (con-ctype (cell-owner (car z))))
‘treeformpref)))
{cond ((eq pref 'dislike) (setq any {(car z)))
((not (eq pref ‘forbidden))
(tree-form-trace-set
(cell-owner (car z))
(fortimes (j (array-length (con-values (cell-owner (car z)))))
3)
shallow)
(return (car z))))))))

TABLE6-58. Determining a “Good™ Artificial Supplicer.

The new version of tree-form-deep (Table 6-58) uscs the preferences expressed by the
treeformpref property to avoid using a disliked constraint-type in an algebraic cxpression. A
forbidden one is never, ever used; a disliked one is used only if therre aren’t any others.

R
PRS- = SRS

§6.3.31 The New Improved Implementation 287

(declaré (special ecutss sallcutss sextra-equationss))

(defun tree-form-gather (cell shallow)

(require-cell cell)

(do ((ecutss (list cell))
(sallcutss (1list cell))
(equations /())
(sextlra-equationss '()))
{(null scutse) (nreverse (append sextra-equationss equations)))

(let ((cut (pop scutss)))
(push (list (cell-goodname cut) (tree-form-chase cut shallow t))
equations))))

(defun tree-form-chase (cell shallow top)
(require-cell cell)
(let ({(s (cell-true-suppliier cell)))
(cond ((and shallow (node-boundp cell)) (cell-value cell))
((and (not top) (not (singlenummarkp s)))
(cond ((and (null (cell-owner s))
{(not (null (cell-rule s))))
(do ((c (node-cells s) (cdr c)))
((null c) (cell-contents s))
(cond ((good-global (car c) s)
(cond ((not (memq (car c) =allcutsse))
(push (car c) =allcutss)
(push (1ist (cell-name (car c)) (cell-contents s))
sextra-equationss)))
(return (cell-name (car c)))))))
(t (let ((best (do ({c (node-cells s) (cdr c)))
((pull c) s)
(and (good-global (car c) s)
(return (car c))))))
{(cond ((and (not (and (eq best s) (globalp s)))
(not (memq best sallcutss)))
(push best sallcutss)
(push best scutss)))
(cell-goodname best)))))
{((cell-owner s)
(cond ((and (eq s cell) (not top)) (cell-goodname s))
(t (1et ((args (forarray (v {con-values (cell-owner s)))
(cond ((eq v s) ‘%)
((and (node-boundp s)
(not (member (cell-name v)
(rule-triggers
(cell-rute s)))))

)

?)
(t (tree-form-chase v shallow ()})))))
(nconc (1ist (ctype-symbol (con-ctype (cell-owner s))))
(if (eq (car args) ‘%) (cdr args) args)
(and (con-info (cell-owner s))
(1ist (con-info (cell-owner s)))))))))
((globalp 3) (celi-name s)) (e
(t (cell-contents s)))))

TABLE 6-59. Constructing the Traced-out Algebraic Expression.

288 CHAPITR SIX LrriciENey

(defun good-global (c s) :1s ¢ a good global for naming s?
(and (not (eq c s))
(globalp c¢)
(or (and (or (eq (cell-state s) @king)
(eq (cell-state s) @puppet)
(eq (cell-state s) Bslave)
(eq (cell-state s) @friend))
(eq (cell-state c) @slave))
(and (eq (cell-state s) Brehel)
(eq (cell-state c) @dupe)
(eq (cell-contents ¢) s))
(and (eq (cell-state s) @dupe)
(eq (cell-state c) @dupe)
(eq (cell-contents c) (cell-contents s))))))

(defun Lree-form-unmark (cell)
(require-cell cell)
(let ({s (cell-true-supplier cell)))
(cond ((nummarkp s)
(unnummark s)
(and (cell-owner s)
(doarray (pin (con-values (cell-owner s)))
(Lree-form-unmark pin)))))))

TABLE 6-60. Checking for a Good Globat Name. and Unmarking. for tree-form.

The new version of tree-form-chase (Table 6-59) uses the % convention—as it translales
the pins of some constraint. it notes which one was the output pin and substitutes a % for it. Also,
for any pin that was not a trigger of the rule that computed the value, if any, it substitutes a ?, as
before. When constructing the final form, if the first argument expression is % it is omitted.

‘T'he predicate good-global (Fable 6-60) takes a two cells of a node, and is truc if the first
is thought to be a good choice as a name for the sccond. For this to be the case it must be different
from the second, must be the cell for a global variable, and must take its value from the same place
the sccond onc docs. (1t might scem that the clause (eq (cell-state c¢) @slave) ought
rather to be

(or (eq (cell-state c) @slave)
(eq (cell-state c¢) @friend))

—however, a global variable never has its own value, and so can never be a friend.)
The function tree-form-unmark runs around as before, resctting all the marks,
As an cxample of what, consider this intcraction:

(test) ;set up temperature conversion network
DONE

== fahrenheit (parameter -40))
DONE

¥
PR

§64 The New Improved IExample 289

(what centigrade)

;The value -40 in CENTIGRADE was computed in this way:
: CENTIGRADE « (s (+ (+ FAHRENHEIT % 32) 5) 9 %)

H FAHRENHELT « -40

OKAY?

This algebraic form may be unfamiliar, but it correctly conveys the network structure used to
compute the value.

(== fahrenheit (default 32))
: ::: These are the premises that seem to be at fault:
j : CCELL-415 (DEFAULT-413) [OPPOSED] KING 32>,
i : <CELL-412 (PARAMETER-410) REBEL -40 AGAINST 32> == FAHRENHEIT,
;13 Choose one of these to retract and RETURN it.
;BKPT Choose Culprit
(return fahrenheit) ;uniquely identifies the culprit
DONE

Note that returning fahrenhe it uniquely identifics the culprit even though it and both premises
arc allin the same node (cf. §6.3.20 and Table 6-27 (page 243)). It could also have been specified by
(return parameter-410) .

(what centigrade)

;The value 0 in CENTIGRADE was computed in this way:
; CENTIGRADE « (+ (s (+ FAHRENHEIT % 32) ?7) 9 %)

; FAHRENHEIT « 32

OKAY?

Because 32 and %" sum to Fahrenheit (which is also 32). thercfore %™ is zero, and so the
other operand to the inner multiplication was not a trigger for the preduct. “This other operand is
therefore represented asa ™7™,

6.4. The New Improved Example

Onc advantage of using the queue-based control structure is that pending computations are
stored explicitly as data structures rather than implicitly in the host-language control stack, which
in many cases is of a finite size much smaller than the heap arca—this is the case for many 11sp
implementations, including Fisp Machine 11Sp, Using the system of Part One, it was not possible to
run the N queens problem for N == 6 because the LISP system stack would overflow. There is no
problem with the current queuc-based system, however,

The new language has the disallow const cict, which allows cycling though a set of pos-
sibilitics. In this example we will obtain all four solutions for the six queens problem. At cach step
we will ask for the statistics also.

290 CHAPTER SiX EFFICIENCY
(sixqueen) ;start up the six queens problem
DONE ;after much computationt

‘The 11SP function sixqueen mcrcly creates a large number of constraints analogous to those
in Table 5-19 (page 166), Table 5-20 (page 166), Table 5-21 (page 167). and Table 5-22 (page 167).

(1ist o0 q1 g2 q3 q4 g5)
(<CELL-49 (QO0) SLAVE 1>
<CELL-51 (Q1) SLAVE 3>
<CELL-53 (Q2) SLAVE 5>
CCELL-55 (Q3) SLAVE 0>
<CELL-57 (Q4) SLAVE 2>
<CELL-59 (Q5) SLAVE 4>)

(stats)

: 248 = Repositories generated

; 248 = Cells genarated

: 0 = Initialized cells

: 81 = Constraints generated

H 3895 = Iterations of top-level-loop queve scan

: 3742 = Rules enqueued

H 3156 = Added rules enqueued

H 51 = Forget rules enqueued

; 5§35 = Nogood rules enqueued

: 3495 = Attempts to run a rule

H 2785 = Successfully run rules

: 1291 = Rule runs which dismissed

. 0 = Rules which overrode other rules

: 143 = Rules which superseded other rules

: 30 = Usurpations

H 124 = Contradictions dequeued for processing

: 103 = @NODE contradictions dequeued for processing
: 0 = QCONSTRAINT contradictions dequeued for processing
21 = QRESOLUTION contradictions dequeued for processing
H 124 = Contradictions actually processed

o 'i.ir’d""_\.

The New Improved I'xample 291

H ‘124 = Nogood culprits automatically chosen
: 124 = Nogood sets installed

: 201 = Number of calls to ==

i 12547 = Awakenings

: 2546 = BGADDED awakenings

: 0 = QFORGET awakenings

i 9336 = GNOGOOD awakenings

H 1270 = Values forgotten

: 3778 = Number of nogood sets checked

; 5706 = Number of nogood set pairs checked
NIL

There have been 103 ordinary contradictions and 21 resolutions. Now we will disallow this
particular solution, and force a scarch for another.

(disallow q0 q1 q2 q3 q4 q5)

DONE

(1ist q0 q1 q2 q3 g4 q5)
(<CELL-49 (Q0) SLAVE 3
<CELL-51 (Q1) SLAVE 0>
<CELL-53 (Q2) SLAVE &
(CELL-55 (Q3) SLAVE D
<CELL-57 (Q4) SLAVE 5>
<CELL-59 (Q5) SLAVE 2>)

(stats)

H 248 = Repositories generated

; 248 = Cells generated

H 0 = Initialized cells

: 81 = Constraints generated

5294 = Iterations of top-level-loop queue scan

H 5278 = Rules enqueued

H 4318 = Added rules engqueued

H 51 = Forget rules enqueued ‘ o ———
909 = Nogood rules enqueued

29

*
.
’
.
’
’

\ :

CHAPTER SIX

4847
4046
1800
0

267
30
170
128

0

42
170
170
170
201
20332
3483
0
15764
1898
8913
13603

f NIL

(

(

<CELL-49
<CELL-51
C<CELL-53
<CELL-55
<CELL-57
<CELL-59

stats)

Attempts to run a rule

Successfully run rules

Rule runs which dismissed

Rules which overroda other rules

Rules which superseded other rules
Usurpations

Contradictions dequeued for processing

@NODE contradictions dequeued for processing
@CONSTRAINT contradictions dequeued for processing
@RESOLUTION contradictions dequeued for processing
Contradictions actually processed

Nogood culprits automatically chosen

Nogood sets installed

Number of calls to ==

Awakenings

QADDED awakenings

@FORGET awakenings

@NOGOOD awakenings

Values forgotten

Number of nogood sets checked

Number of nogood set pairs checked

(disallow q0 g1 g2 g3 g4 g5)
DONE
{1ist q0 q1 q2 q3 q4 q5)

(Q0) SLAVE 4>
(Q1) SLAVE 2>
(Q2) SLAVE 0>
(Q3) SLAVE 5>
(Q4) SLAVE 3>
(Q5) SLAVE 1))

248 = Repositories generated

EFIFICIENCY

Sj——

H 248

: 81
: 7159
: 7404
: 5876
H 51
: 1477
: 6652
: 5733
: 2469

H 428
: 30
H 229
; 159

R 70
: 229
. 229
H 229
3 201
v 31887
' 4307

. 25468

: 2755 =

i 17166
i 26378
NIL

The New Tmpraved Fxample

Cells generated

Initialized cells

Constraints generated

Iterations of top-level-loop queue scan
Rules enqueued

Added rules enqueued

forget rules enqueued

Nogood rules enqueued

Attempts to run a rule

Successfully run rules

Rule runs which dismissed

Rules which overrode other rules

Rules which superseded other rules
Usurpations

Contradictions dequeued for processing

@NODE contradictions dequeued for processing
@CONSTRAINT contradictions dequeued for processing
ORLSOLUTION contradictions dequeued for processing
Contradictions actually processed

Nogood culprits automatically chosen

Nogood sets installed

Number of calls to ==

Awakenings

#ADDED awakenings

@FORGET awakenings

@NOGOON awakenings

Values forgotten

Number of nogood sets checked

Humber of nogood set pairs checked

(disaltow q0 qt q2 q3 q4 g5)

DONE

(Vist g0 q1 q2 q3 q4 q5)

(<CELL-49
<CELL-51
CCELL-53
<CELL-55
<CELL-57
<CELL-59

R, SO

(Q0) SLAVE 2>
(Q1) SLAVE 5>
(Q2) SLAVE 1>
(Q3) SLAVE &
(Q4) SLAVE 0>
(Q5) SLAVE 3))

293

294 CHAPIER SIN Erriciesey ¥
]
. |
]
° b
. i
[4 i -
!
. r;
9
[A
-
(stats) '
248 = Repositories generated : !
248 = Cells genarated "]

: 0 = Initialized cells

: 81 = Constraints generated K
: 8991 = Iterations of top-level-loop queue scan
: 9523 = Rules engqueued

: 7321 = Added rules enqueued

; 51 = Forget rules enqueued

: 2151 = Nogood rules enqueued

H 8427 = Attempts to run a rule ;
: 7466 = Successfully run rules

; 3123 = Rule runs which dismissed

; 0 = Rules which overrode other rules

H 660 = Rules which superseded other rules i
: 30 = Usurpations

: 285 = Contradictions dequeued for processing

H 172 = GNODE contradictions dequeued for processing 1
: 0 = QCONSTRAINT contradictions dequeued for processing 1
: 113 = QRESOLUTION contradictions dequeued for processing ‘1

; 285 = Contradictions actually processed
: 285 = Nogood culprits automatically chosen g
: 285 = Nogood sets installed
H 201 = Number of calls to ==
: 45184 = Awakenings
: 5870 = GADDED awakenings
; 0 = QFORGET awakenings
36872 = @NOGOOD awakenings '

: 3602 = Values forgotten '
: 32911 = Number of nogood sets checked

; 51809 = Number of nogood set pairs checked

NIL 1

At this point all possible solutions have been generated. Disallowing this one causes a “hard-
core contradiction™, after which the final statistics are as follows.

i
f
i
|

§6.4

(stats)

.

248
248
0

81 =

21387
29538
18027

51
11460

20283 =

19256
8606
0

763
30
825
197

0 -
628 =

The New Improved Example 295

Repositories generated

Cells generated

Initialized cells

Constraints generated

Iterations of top-level-loop queue scan

Rules enqueued

Added rules enqueued

Forget rules enqueued

Nogood rules enqueued

Attempts to run a rule

Successfully run rules

Rule runs which dismissed

Rules which overrode other rules

Rules which superseded other rules

Usurpations

Contradictions dequeued for processing

@NODE contradictions dequeued for processing
@CONSTRAINT contradictions dequeued for processing
@RESOLUTION contradictions dequeued for processing

: 825
. 824
H 824
H 201
; 218830
;16150
: 0
. 190396
H 9887
; 162765
. 250279
NIL

= Contradictions actually processed
= Nogood culprits automatically chosen
= Nogood sets installed

= Number of calls to ==

= Awakenings

= QADDED awakenings

= Q@FORGET awakenings

= @NOGOOD awakenings

= Values forgotten

= Number of nogood sets checked

= Number of nogood set pairs checked

It is useful to compare this to the results of the 11SP program of "T'able 5-18 (page 162), which
uscs chronological backtracking.

(queens 6)

Solution:
Solution:
Solution:
Solution:

Total of
DONE

(1,3,5,0,2,4) after 140 contradictions
(2,5,1,4,0,3) after 334 contradictions
(3,0,4,1,5,2) after 408 contradictions
(4,2,0,5,3,1) after 602 contradictions
742 contradictions and 149 backtracks.

and 25 backtracks.
and 64 backtracks.
and 79 backtracks.
and 118 backtracks.

The “backtracks” of this program correspond to resolution steps, and so we may compare

numbers dircctly:

ol i L

296 CHAPIER SIX FIHICINCY ¥
11sp Constraint 1ise - Constraint ‘
Contradictions Contradictions Backtracks Resolutions !
After first Solution 140 103 25 21
After seeond Solution 334 128 64 42 . |
After third Solution 408 159 79 70 ‘ ‘
After fourth Solution 602 17 118 113 !
After exhaustion 742 197 149 628 r
([t casy to see that the non-chronological (Consraint) version examings many fewer positions ! ;

before arriving at a new solution. The number of resolution steps is about the same, unless there
are no more solutions, in which case it must do about the same amount of work as the chronologi-

cal version w prove that there is no solution (this is not surprising).

6.5. The New Improved Summary

‘This chapter has presented a complete re-implementation of the constraint language developed
in Part One. A fow new features (stich as disallow) hive been added to the language. but the
priman emphasis has been placed on speed. The new system records multiple reasons for believing
avalue. [u uses o task queue control structure for more flenibility in allocating computational
resources. It pre-compiles tables of rules for primitive operators for fast run-time access and dis-
crimination of rule to be exccuted. [thashes constant cells in order to shire those with the same
value among multiple uscs. f uses a unifonn algebraic notation in printing parts of the network as

cxpressions.

Oh. once the opposition

Was compledly opposed

To all the suppositions

That was gen'rally supposed:
An" now the superstitions
That were tho't 10 be imposed

Are seen by composition Chapter Seven
To be slightly decomposed!
—Walt Kully (1952)
! Go Pogo

Correctness

T T CONSTRAINT SYSTEM described in the previous chapter is a large program, sufficiently
complicated that there may well remain in it subtle errors. Nevertheless, the design is
intended to make it simple(r) to argue that it is correct. All of the program state is made explicit in
the form of 11SP data structures, concerning which certain strong invariants may be stated.

I have not in any sense demonstrated that the system is correct. ‘T'he system is an exercise in
engineering: it is too large to be a reasonably manageable exercise in mathematics. However, in this
chapter is outlined a serics of statements which, if rigorously proved invariant over the processing
of any queucd task, would go a Tong way toward proving total correctness of the system. Some of
these 1 Aave proved informally for certain classes of tasks, and consideration of these statements
certainly aided in “eycballing™ the code for crrors.

Parcnthctical remarks provide definitions of terms and supplementary clucidation.

7.1. The Structure of Nodes

for every cell:
® its idis a 11SP symbol (rcad-only). (The remark “(read-only)™ about a component means that the
component may never be altered once initialized.)

® its repository is (a pointer to) ! a repository.

1 As in TISP everything is represented in terms of pointers, following this one reminder 1 shall not mention the
presenice of pointers. Nevertheless, the sharing of objects is very important!

297

h
I

298 CUAPTER SEVEN CORRECTNESS

its owner is cither () or aconstraint (read-only).

its name is a 11SP svinbol or an integer (read-only).

its staire is one of the six constants @k ing, Bpuppet, @friend, @slave, @rebel, @dupe.
(When we say “acell is a king™ we mean that its state is @k ing, and similarly for the others.)

its contents is cither () . an integer, or acell.

its ruleis cither () orarule.

its equivs is a list of distinct cells. (By “a list of distinct things™ we mean “a list of things in which
no thing appears more than once™. "I'he list thus represents a set, and so the list may contain the
clements in any order unless otherwise stated.)

its linkisaccllor () .

its meark is (). (Thought apparently constant, this is #ot read-only! 1t may be used temporarily,
but must always be reset to () before scheduling a new task.)

For cvery repository:

its cells is a list of distinct cclls.

its supplier is a cell.

its id is a 1.1SP symbol (rcad-only).

its nogoods is a list of buckets: cach bucket is a pair whose car is an integer and whose cdr is a
list of nogood scts. No two buckets in the nogoods of a single repository may contain the same
integer. (We shall say that “a nogood sct is in the nogoods of a repository™ if the nogood st is a
mcmber of some list which is the edr of some bucket of the nogoods of the repository.)

its contrais an integer.,

Relationships among cells and repositorics:

For every repesitory r, for every cell ¢ in the cells of r, the repository of c is .

For every repository », its supplieris 1 member of its cells list.

The Lise valuc of the i/ of a repasitory is that repository.

“The 11sp value of the «d of a cell is that cell.

If the name of a cell is a symbol, the LISP value of that symbol is the cell.

The link of a cell is a member of the cells list of the repository of that cell.

If a cell has a constraint for its owner, then its name is an integer.

The members of the equivs list of a ccll arc all members of the cells list of the repository of that
cell.

If cell ais a member of the equivs list of cell b, then b is a member of the equivs of a.
No cell is in its own equivs list.

‘The cell which is the supplier of a repository must have () for its link.

Any ccll which is not the supplier of its repository must have a cell for its link.

o — —

PPy

§7.2 Constraint-types and Constraints 299

Ifcell a is the link of cell b, then ais in the equivs list of b (and therefore b is also in the equivs
list of a).

Consider the relationship between two cells g and b “cell bis the link of cell & the transitive
closure of this rclationship is an irreflexive partial order, that is, there are no cycles. (This plus
the fact that precisely one cell of a node has a null link implies that the link structure forms a
directed tree with all paths cventually converging at the supplier.)

Relationships among the states of cells and other things:

No ccll which is not a supplicr is a king or puppet.

The cell which is the supplier for a repository is a king or puppet. (By “the supplier of a cell™ we
mean the supplicr of the repository of the cell. By “the king of a cell” we mcan the supplier of the
repository of the cell, which is known to be aking.)

‘The supplicr of a rebel, friend, rebel, or dupe is a king. (Conversely, if the supplier of a
repository is a puppet, then all other members of that repository’s cells list are slaves.)

A slave or puppet has () for its contents and its rule.

A dupe has a ccll for its contents, and that ccll is a rebel and a member of the cells list of the
dupe’s repusitory. A dupe has () for its rule.

A king, friend, or rebel cell has an integer for its contents, and a rule for its rule.

The contents of a friend is the same as the contents of its king,

The contents of a rebel is different from the contents of its king.

A king, friend, or rebel cell cither has a constraint for its owner, or has onc of the three special
rules sconstant-rules, *default-rules or sparameter-rules forits rule.

The contra of a repository is cqual to the number of rebels in its cells list.

We say that “a ccll has a value™ if the cell is a king, friend, rebel, or dupe, or if it is a slave and
the supplier of the cell's repusitory is a king. The valuc of a king, friend, or rebel is its confents; the
value of a dupe is the contents of its contents (a rebel); the value of a slave which has a valuc is the
contenis of its king.

7.2. Constraint-types and Constraints

For cvery constraint-type:

its name is a 11SP symbol (read-only),

its vars is an array of distinct 1LISP symbols (rcad-only). (When a constraint-type is being dis-
cussed, a reference to N refers to the length of this array. An integer used to index this array, or
any parallel array, is calied a pin-number. The corresponding clement of the vars array is called
the pin-name for that pin-number.)

= a

-

300 CUHAPTER SEVEN CORRECTNESS

e its added-rules is an array of fength N of lists of distinct rules (read-only),

® its forget-rules is an array of length N of lists of distinct rules (rcad-only).

o its nogood-rules is an array of length N of lists of distinct rules (read-only). (1he three arrays
added-rules, forget-rules, and nogood-rules of a constraint type arc called the “rule arrays” of the
constraint-type. ‘The sct of all rules appearing in any clement of any rule array of a constraint-
ype is called the “rule set”™ for that constraint-type.)

e its symbolis a 11SP symbol (rcad-only),

Every constraint-type is entirely read-only.

For every constraint:

e its name is a 11SP symbol (read-only).

e its ¢ciypeis a constraint-type (read-only). (When a constraint is.bcing discussed, a rcference to N
refers to the length of the vars array of the ctype of the constraint. Also, by an “instance™ of a
constraint-type we mean any constraint whose cfype is that constraint-type.)

o its values is an array of length N of distinct cells (read-only). (The set of cells which are clements
of the values array of a constraint arc called the “pins™ of that constraint.)

e its info may be anything (normally read-only).

e its yueued-rules is an integer.

Miscellancous relationships:

o ‘The 11sp valuc of the name of a constraint-type is that constraint-type.

o ‘The 1ISP value of the name of a constraint is that constraint.

& The symbol of a constraint-type has on its property list a ctypename property whose value is
the name of the constraint-type.

o Ifacell has a constraint for its owner, then the name of the cell is an integer j not less than 0 and
less than N, and entry j of the values array of the owner of the cell is that cell. (It follows that
all the cells in the values array of a constraint have distinct nanme components ranging from 0 to
N—1)

7.3. Rules

For every rule:

o its triggersis a list of distinct intcgers (read-only).
o its ourvaris cither () or an integer (read-only).
® ils code is a 11SP symbuol (rcad-only).

® its ciype is a constraint-type (read-only).

- —————. - —_ i

§7.3 Rules 301

o its bits is an integer 0, 1, 2, or 3 (rcad-only). (We say that a rule is a &nogood rule if this
integeris 1 or 3. and a &nogoodbeg rulcifitis2 or 3.)

o its il-bit is a positive integer which is a power of two (read-only).
Every rulc is entircly read-only.

Relationships among rule componcents:

o The 1isp valuc of the code of a rule is that rule.

e 'The 118 function definition for the code of a rule is a LIS function of one argument. The value
of this function (when given an appropriate argument. to be described later) is cither an integer
or onc of the special constants @1ose and @dismiss, and it may not be an integer if the
outvarof the rule is ().

e Ifthe vutvarof a rule is an integer, then it is not cqual to any member of the riggers list.

e [fthc outvarofaruleis () then the bits of the rule is zero.

Relationships between rules and constraint-types:

¢ Ifarule is a member of any clement of any rule array of a constraint-type, then the ciype of that
rule is that constraint-type.

o ‘The integer clements of the rriggers of a rule, as well as the owsvar of the rule if it is not (), are
cach not less than 0 and less than A, the length of the vars of the enype of the rule. (Thus each of
these integers is a pin-numbcr.)

o A rule is a member of clement j of the added-rides array of its ctype if and only if j is a member
of the rule’s rriggers.

e A rule is amember of clement j of the forger-rules array of its ctype if and only if its outvar s j.

o A rule is a member of clement § of the nogood-rules array of its ctype if and only if its ourvar is j
and its bits is non-zcro,

o ‘The id-bit components of all the rules of a constraint-type’s rule set are distinct.

On the running of rules:

o ‘The code of a rule may be applicd only to an instance of the cfype of the rule. (When such an
application is performed we say that the rule is “run’ on the instance constraint.)

o When a rule is run on a constraint, the trigger cells for the rule mnust all have values. (By the
“trigger cells™ of a rule being run, we mcan the sct of cells which are clements of the values of
the array and whose names (which are the corresponding indices into that array) arc members of
the triggers list of the rule.)

e ‘I'he result computed by running a rule on a constraint may depend only on the valucs of the
trigger cells and the info of the constraint; and also on the nogoods of the repository of the
output ccll (if any) provided that the birs of the rule is non-zero. (If the rule’s vurvar is not ()
and the result of running the rule on a constraint is an intcger, we say that “the rule produced

e ._._._4._A. PR A

L

302 CHAPTER SEVEN CORRECINESS

the integer for the output cell”, where by “output cell”™ we mean that clement of the values array
of the constraint whose index in the array cquals the ourvar of the rule.)

o Ifacellis a king, fricnd, or rebel, and its owner is a constraint, then its rule must be a rule in
the rule sct of the ¢rype of the owner of the cell, and that rule’s vusvar must be equal to the name
(an integer) of the cell. Morcover, the triggers cells of the rule must all have values which would
causc the rule, if run, to return the integer which is the contents of the cell. (Very important!
This requirement implics that all values are well-founded upon premises.)

On the consistency of rules:

¢ Suppose that two rules in the rule set of some constraint-type have the same integer J for their
respective outvar components, and that the sct of elements of the miggers of the first is a subsct
(not necessarily a propert subsct) of the sct of clements of the rriggers of the second. Consider
some instance of that constraint-type, and suppose that cvery pin which is a trigger cell of the
sccond rule (and thercfore also of the first) has a value. Consider the values which would be
produced by running cither of the two rules in this same situation. If both valucs would be
integers, then they must be the same integer unless at least one of the rules is a &nogoodbeg
rule. (Indecd, in this situation onc would expect the first rule, which gets less information, to be
a &nogoodbeg rule.)

¢ Consider a constraint, and an ordered sequence with distinct ciements (ry, ry, . . ., 7,,) of at least
two rules from the rule sct of the ciype of the constraint. Suppose cach of the rules has a non-
null putvar, and that for cach 1 < j << n the output pin of rule r; is a trigger cell for rule
7511, and the output pin of rule r,, is a trigger cell for rule r. Supposc that all the trigger
cells of all the rules have valucs, except those which are output pins of all rules except r,,. Now
suppose that the code of rule 7 is run, producing a valuc which is then assigned to the output
pin of r; then rule r, is run, and so on, Then the value produced by r,, must agree in value
with the valuc its output pin alrcady had unless some r; is a &nogoodbeg rule. (Example:
one adder rule takes a and b and computes c; then if the rule that takes b and ¢ to produce
a were run, it ought to produce the same value for a. Note, however, that such a rule would
not ordinarily actually be run (rules are not awakened by values computed by other rules of the
samg constraint), preciscly because this consistency is taken for granted.)

7.4. Tasks and Queues

Propertics of tasks and queucs:

e A queuc contains, among other things, a bag of tasks. Qucucs arc of two kinds: rule qucues and
contradiction qucucs. (I am ignoring the »rebel-queue= here, for that is a minor variation.)
Rule queucs may contain only rule tasks, and contradiction rules only contradiction tasks.

§7.5 Nogood Sets 303

A ruletask is a pair of a rule and a constraint. The constraint must be an instance of the ciype of
the rule.

Contradiction tasks are lists, and are of three kinds, distinguished by a special constant in the car
of the list. A @node contradiction task has two cells in its cadr and caddr. A @constraint
contradiction has a constraint for its cadr, and its cddr is an a-list associating cclls with integers.
A @resolution contradiction has a ¢cdr which is an a-list associating cells with integers.

At “task scheduling time”, any task may be removed from any queuce and exccuted. When that
task has completed., it is task scheduling tine again. (1t is at this time that all of the invariants
presented in this chapter must hold.)

Rule tasks:

Considcer any rule and any instance of that rule’s crype. Suppose that all the triggers cells for that
rule have values. ‘Thea one of three situations must hold: (1) At least one of the trigger cells is
a king, friend, or rebel (implying that its valuc was computed by some other rule for the same
constraint). (2) A task pairing the rule with the constraint is in some rule queue. (3) [.et x be
the result of running the code of the rule on the constraint in that situation. If x is @1ose then
there must be a @constraint task on the contradiction queuc mentioning the all trigger cells
of the rule. If x is an integer then the output pin of the rule must be a king, friend, or rebel, and
have that integer as its contents,

If the value ¢ for a constraint’s quewed-rules satisfics (¢ {mod 2711)) > 27 for some intcger j
(i.c. the 27-bit is sct in the bit-vector represented by g). then there is in some rule queue a rule
task pairing that constraint with the unique rule in the rule set of the constraint’s czype which
has an id-bit component cqual to 27,

Contradiction tasks:

For every rcbel cell there must be in some contradiction queuc a @node contradiction task
mentioning the rebel cell and its king,

7.5. Nogood Sets

A nogood sct is a list whose car is the 11SP symbol nogood and whose cdr is an a-list associating
distinct repositories with integers.

A nogood sct is in the nogoods of a repository if and only if the repository is mentioned in the
a-list of the nogood set. More specifically. the nogood set will be in that (unique) bucket of the
repository’s nogouds whose car is the integer which the nogood sct’s a-list associates with the
repository.

If a nogood sct exists, then it must be the case that if all values were removed from the network,
excepting constant cclls, and then default cells containing the integers specified in the nogood

304 CUAPTER SEVEN CORRECTNFISS

set were added to the respective repositories, then by running appropriate rules a contradiction
could be derived whose premises would be precisely the added default cells. (This invariant is
stated very loosely, of course. The point is that a contradiction could be logically derived in a
well-founded manner solely from the values in the nogood set.)

7.6. User Interface

Invariants of the previous scctions are concerned with the internal workings of the system.
There also need to be statements relating these internal workings to what the user types, to ensure
that the work done by the system actually reflects the meaning understood by the user.

e Whenever a task is to be scheduled, it is pennissible instcad to process a user request (which
may of coursc alter the network).

o [f there arc no tasks on any of the qucucs (in which casc we say that the system is quiescenit),
then the network is free of contradiction, and the stated relationships hold among all quantities
in the network. The network structure may then be understood o represent the sum total of all
preceding uscr input, and the contents of cells to represent validly deduced values.

e A scquence of user inputs (other than information queries such as why) can be understood in
terms of an cquivalent sequence of inputs consisting only of create, variable, ==, and
disallow statements, in that order.

The remainder of this scction would consist cssentially of the language definition from §6.1,
which is therefore not repeated here.

7.7. Summary

This chapter docs not by any means indicate all the invariants which might possibly be stated.
It docs present a large number of invariants, some of them rather complex, which ought to be
shown to hold.

One would also like to be able to exhibit a true multiprocessing implementation of a constraint
language. If it were based on this implementation, one approach would be to identify the precise
conditions under which two tasks could interfere with cach other, and then arrange interlocks so
that interfering tasks cannot run in parallcl. Of course, the current implementation enforces such

an interlock, a rather stringent one requiring that no two tasks run in parallel!’ But, for example,
it is cntircly plausible that many rule tasks could run in paralicl, provided that they opcrated on
constraints sufficicntly scparated within the network, or that appropriate intcrlocks were placed
in process-setc with regard to the sctting of ccll contents and recording of nogood scts.

2

§7.7 Summary 305

!
(Vechniques for proving propertics of parallel programs of this type are described in [Owicki 1975} ‘,
and [Gries 19771.) *

T i oy
NET L. % -

306 CUAPTER SEVEN CORRECTNESS {

[I'his page intentionatly feft blank.]

Part Three

Abstraction

Well. then Fido got up off the floor
And he rolled over

And he looked me straight in the eve.
And you know what he said?

“Onee upon a time
Somcbodv say to me.”
(This is the dug talkin™ now.)
“What is your
conceptual
continuity?

“Well. 1 rold him right then,” Fido said.
“It should be easy to see

The crux of the biscuit

Is the apostrophe.™

Well. vou know. the nun who was wlkin’ to the dog
lovked at the dog and he said
(Sort of strin” in disbelief),
“You cant say that!”
He said.
"It doesn’t!
And you can’t!
! wont!
And it don’t!
It hasn't!
It isn't!
It vven aint!
And it shouldn't!
It couldnt!™
He told me. “No no no!™
I 1ld him. “Yes yes yes!™
Iosuid. 1 do it all the timel™
(Ain't this boogie a mess?)
—Frank Zuppa (1974)
“Stinkfoot™
Apostrophe

308

i

“The Old Quken Bucket™
Already is written;

Theres naught left 1o me
For an amphibrach fitten.

—Guy Lewis Steele. Sr.
A stitch in time iv worth two in the bush
If vou count them before you come io them. Chapter Elght
Eacepting Tebruary. which has 1weniy-eight.
—The Reverend Doctor Cuddles

Hierarchy

P REVIOUS!Y PRESENTID VERSIONS of the constraint lingnage have been “flat”™. In this chap-

ter two forms of hicrarchy are introduced. One stems from a macro-definition mechanism,
which allows the user to define non-primitive constraint devices in terms of a network of other
constraints. Onc may think of this as a trivial kind of subroutine mechanism, one which does not
permit recursion. This mechanisin introduces a calling hicrarchy or an abstraction hicrarchy, with
complex things defined in terms of simpler things to many levcls. ‘The other form of hicrarchy
stems from permitting the user to write expressions in the nested algebraic syntax described in
§6.2.5: this is a syntactic hicrarchy, with complex cxpressions built from simpler ones. Both forms
of hicrarchy allow nctworks to be expressed much more conciscly.

8.1. New Features for the Constraint Language

Here the changes to the constraint language arc described. Besides the expression syntax
and the macro mechanism, a special parsing and evaluating mechanisim will be introduced which
will relicve the restriction of the syntax to (i1sr-cvaluable forms. The parser taikes an S-expression
representing a request for the constraint system, and reduces it to a set of simple statements. "I'he
evaluator acts on these statements, usually just by calling the 18P evaluator (since much of the
system is derived from the version in Chapter Six), but not always. In additon, a simple iteration

construct is provided.

309

[T

oy

-

310 CHaprter Eignr Hi-RARCHY

8.1.1. The User Can Describe Networks Using the Fxpression Syntax

All nested expressions are considered to be abbreviations for a collection of create and ==
statement (indeed. in the implementation described later in this chapter, expressions are processed
by constructing that cquivalent collection and then processing the collection). The syntax will
therefore be explained as such abbreviations.

Suppose that sym is the symbof for some constraint-type named type, and that the namcs of
the pins for that constraint-type are x, y. z....; then the cxpression

({(sym name) a b c ...)

is a statement equivalent to these statements:
te name type)
(the x name))

a
a

== b (the y name))
¢ (the z name))

Also, if any one of the argument forms is the symbol *%™ then the expression is not a statement, but
rather denotes the corresponding pin of the constraint instance. Thus, for example,

(== ((sym name) a % c ...) foo)

is equivalent to
(create name type)

== a (the x name))
== ¢ (the z name))

(:=.(the y name) foo)

because the % was in the position corresponding to (the y name).

‘There must be exactly as many argument forms as there arc pins for the specified constraint-
type (with two exceptions), and they are matched by order of appearance of argument forms in the
mentioning expression and order of appearance of pin-names in the declaration of the constraint-
type. If no argument form is %, then the expression is a statement and does not denote anything;
if one if %, then the expression denotes the correspoading pin. No more than one argument form
may bea %. '

e e e -

-

it " s

e

e

axitiifie.

§8.1.2 New Features for the Constraint anguage in

Onc exception to the rule is that one fewer argument form than the number of pin: may be
written, and no % written; in this case a % 1s taken o be an implicit argument form preceding all
the others. The other exception is that an extra argument form may be written, which will become
the info component of the constraint instance. In this way one can write (assumption % 4), or
simply (assumption 4). The special routine assume is not necded in the implementation to
construct an asstnption: the necessary machinery falis out of this gencral notation,

As an example, a temperature conversion network may be described by the single statement

({+ add) fahrenheit ((+ othermult) ((* mult) 9 centigrade) 5 %) 32)

which is entirely equivalent to the old definition

(create add adder)

(create mult multiplier)

(create othermult multiplier)

(== fahrenheit (the ¢ add))

== (the b add} (constant 32.))

== (the a add) (the a othermult))

== (the ¢ othermult) (the ¢ mult))
== (the b othermult) (constant 5))
(== centigrade (the b mult))

== (the a mult) (constant 9))

(Note that the variable declarations have been omitted. The parser arranges to perform an
implicit variable dcclaration during the parsing process for any variable mentioned in an ex-
pression, provided that the variable has not alrcady been so declared. To get the ceffect of re-
declaring a variable, the user can just destroy itand then mention it again.)

If instcad of a list (sym name) in the “opcrator position”™ of an expression, the user writes
simply name, then the parser generates a name of the form type - nan.

If in place of an argument form the user writes “?”, then no == statement is generated for
that argument position; it means “the corresponding pin is not connected to anything here™.

8.1.2. The User Can Define Non-primitive Constraints
A form is provided for declaring new constraints in terms of old ones:

(defcon name pin-numes . body)

says that name is the name of a new constraint-type whose vars is the sct of names pin-names.
Whenever an instance of narte is to be created, a copy of the network described by the statements
in body is constructed. Thercafter name may be used as any other constraint-type naine in create

statcments.

312 Cnaprter KIGHT HIERARCHY

. E .

-

FiGure 8-1. User Definition of the 1F Device,

As an example, we can define a “temperature converter device™ which has two pins called f
and ¢ which cenforces the FFahrenheit-to-Centigrade relationship between the two pins:

(defcon temp-converter (f c)
((+ add) f ((» othermult) ((e mult) 9 c) 5 %) 32))

If later we were to say ((temp-converter tc) fahrenheit centigrade) then the
usual relationship between fahrenheit and centigrade would hold, mediated by an in-
stance of temp-converter called tc.

Once can of course refer to the pins of such a constraint instance by saying, for cxample,
(the ¢ tc) to refer to the pin ¢ of tc. Onc can also refer to the devices used in the
instantiated nctwork. The cxpression (the add tc) refers to the adder of the network for
the instance tc of temp-converter; it follows that (the b (the add tc)) is a pin
which is connected to the constant 5. 1If tc had been part of another device zed then
(the b (the add (the tc zed))) would namea pin. In this way we can usc pathnames to
refer to parts of parts of . .. parts of a complex constraint device,

As another example of a uscful device, we can define an if device, a non-directional version
if the standard if-then-clse-i programming-language construct (which connects a “result”™ pin to

aedin L mte

Y

§8.13 New Features for the Constraint Ianguage 313

one of two “source™ pins; or. from another point of view, connects a source pin to one of two result
pins!);
(defcon if (result test then else)

(gate test then result)
(gate (+ 1 test %) else result))

(Sce Figure 8-1.) ‘This definition uses an adder to perform logical negation. With this, one can then
write things like

(+ f (» (¢« 9 (if kelvin-flag (+ ¢ % 273) c}) 5 %) 32)

to cnable ¢ to be cither a temperature Kelvin or a temperature centigrade according the the flag
kelvin-flag.

If any variables other than pins are mentioned in the body of a defcon definition, they
are taken o be local w e definition: the varable is instantiated afresh for cach instance of the
containing definition. if it is desired that every instance be hooked up to some single instance of a
global variable, then the construct (global var) may be used to refer to it.

8.1.3. Pathnames May be Written is Abbreviated Form

A pathname such as (the b (the add (the tc zed))) may be contracted to simply

(the b add tc zed). Forcven greater concisencess, it may be written simply as zed . tc. add.b.

Here the path is written in the reverse order, with the name of the original object fiest and succes-
sive selectors following, separated by periods. If the name contains a leading period, then the
name of the initial object is global; thus . foo is the same as (global foo). This is of course
similar to the component sclection notation of many programming languages, and also to the file
pathnamcs of Multics and UNIX, which use characters other than the period.,

‘this facility is made possible by the introduction of the parser, which checks symbols in the
input for periods in their names, and expands them into appropriate the and global constructs.

8.1.4. 'The vector Construct Provides Limited Iteration

‘The special form

((vector name) size interfuce common . body)

defines and instantiates a special kind of constraint-type, a vector consisting of size copies of the
network defined by body, placed side by side. The size must be an integer—this limited facility does

———— ———— ..

e ——— e .

L PV D SIY SIS Y. ik AN

-

314 CuarTER FiGUT HiERARCHY

FIGURE -2, Pictorial Representation of the Body Prototype for a Vector,

not allow for variable-length vectors. ‘The instances of body have names which are the integers from
zero (inclusive) to size (exclusive).!

The interface describes how adjacent networks in the serics are connected. It is a list of
descriptors, and cach descriplor is a list of four things:

(leftedge left right rightedge)

‘The left and right must be names; they arc pin-names for the body. If two instances x and y of
the body arc adjacent, with x to the left of y. then the right of x is connccted to the left of y. The
instance of budy at the left end of the row has its left connccted to lefiedge, which may be any
cxpression denoting a cell, or ?; similarly for the right of the instance at the right end of the row
and rightedge.

The list conumon is a list of names global to the vector construct which are to be made
available to every instance of body. (This set is deducible from context, but to simplify the present
implementation the user is required to declare these.)

As usual, if onc writcs (vector ...) instcad of ((vector name) ...) then a name is
automatically gencrated.

Figure 8-2 shows a diagram representing the body of a vector defined as

((vector “00) 7 ((ap x i) (baqy j) (cr zk)) (f gh) <bodyd)

1. For technical reasons the names are actually LISP symbols whose print names arc digil sirings which look like
the way the integer would print. ‘Thus the first instance in a vector has the name |0 or /0, nol 0, to usc Lisp
Machine LISP syntax. As we shall sce, when pathnames with periods are used this distinction is not apparent.

§8.14 New Featres for the Constraint Language 315

FIGURE 8-3. An Fntire Vector, and lts Conncections.

Figure 8-3 shows three of the seven instances of the body belonging to the vector, and their connec-
tions, ‘T'he left-hand pins p, q. and r of cach one arc connected to the right-hand pins x, y, and
2z of the instance to the left. The lefimost instance has its Icft-hand pins connccted to a. b, and c,
while the rightmost has its right-hand pins connccted to 1, j, and k. Al of them have the common
pins f, g.and h connccted to the external variables of the same name.

As a simple concrete example:

((vector foo) 4 ((input a b output)) () (+ b a a))

makes a length-four chain of adders like the onc in Figure 3-2 (pagce 84). This statement is entircly
equivalent to these declarations:

(DEFCON VECTOR-BODY-374 (A B) (+ B A A))
(DEFCON VECTOR-TYPE-373 (A B)
((VECTOR-BODY-374 |0]) A 1)
((VECTOR-BODY-374 [1]) (THE B |0]) ?)
((VECTOR-BODY-374 |2]|) (THE B |1]) ?)
((VECTOR-BODY-374 [3]) (THE B |2]|) B))
((VECTOR-TYPE-373 FOO) INPUT OUTPUT)

The body of the vector is made into a macro-constraint-type. Another macro-constraint-type is
declared for the entire vector, which makes four instances of the body and makes the internal

conncctions between adjacent instances. Finally, this latter macro-constraint-type is instantiated,
the instancc is named foo, and the edge connections to input and output arc made. Note the

316 Cuarrer FiGur HIERARCHY

(deftype constraint-type

(ctype-name ctype-vars ctype-added-rules ctype-forget-rules
ctype-nogood-rules ctype-symbol (ctype-initfn ()))

(format stream "<(Constraint-type “S>" (ctype-name constraint-type)))

(deftype constraint
{con-name con-owner con-ctype con-values con-info (con-queued-rules 0))
(format stream “<T{~ATt . 7}.7S>"
(con-pathname coastraint) (ctype-name (con-ctype constraint)}))))

(deftype macro-canstraint-type
(mctype-name mctype-pins mctype-allvars mctype-creations mctype-connector)
(formal stream "<Macro-constraint-type “S$>" (mctype-name macro-constraint-type)))

(deftype macro-constraint
(mcon-name mcon-owner mcon-mctype mcon-values mcon-devices)
(format stream “"<"{TATt.7}:7S>"
(con-pathname macro-constraint)
(mctype-name (mcon-mctype macro-constraint))))

Compare this with Table 6-3 (page 204).

TABLE 8-1. Macro-constraint-types and Macro-constraints,

usc of ? to indicatc no conncction, and the “numerical™ names for the components of the vector.
For example, there is an cquating between f0o0.0.a and foo. a, which is in turn connected to
input. Similarly, foo.0.b and foo.1,a arcconnccted, asarc foo.1.b and foo.2.a.

8.2. Implementation of Parsing and Macros

The code given here shows only the changes from the full system described in Chapter Six.
First the new data types are described, then changes to previously existing mechanisms, and finally
the new top-level loop and parser. "

8.2.1. Macro-constraints Are Instances of Mucro-constraint-types

User-defined macra-constraints are represented in a way very similar to ordinary constraints,
Fable 8-1 gives the data structure definitions for constraint-types and macro-constraint-types, for
constraints and macro-constraints. ‘The differences arise from the fact that a constraint has pins and
rules, but a macro-constraint has a defining nctwork. 'Fhe interface information is similar, hewever.

‘The list (actually an array) of pins vars in a constraint-type becomes two in a macro-constraint-
type: pins and allvars, the first being a subsct of the second. The wllvars is the sct of all variables in

T
JOC

R 3

-

§8.21 Implemeniation of Parsing and Macros 7

the defining network, while pins is the sct of terminals, variables to which the “outside world™ con-
nects. Primitive constraints have no internal variables represented by cells. and so do not require an
allvars sct.

A macro-constraint-type does not have a symbol because in this simple implementation there
is no mcans for printing a macro-constraint in algebraic form. 1t does not have tables of rules, for
there are no rules. 1t does have, however, two components called crearions and connector. The
creations is a list of 3-lists; cach 3-list describes one create operation to be performed when in-
stantiating the network for an instance of the macro-constraint-type. The first clement of such a 3-
list is the name of the device; the sccond is the type (cither a constraint-type or a macro-constraint-
type) of the device: and the third is a datum to be installed in the info component of the device (if
it is a primitive constraint). The connector is a function of onc argument which, when applied 1o a
macro-constraint instance, will make all the cquatings necessary to wire up the network.

A constraint as well as a cell may now have an owner, which of course must be a macro-
constraint. The owner of a cell may now be a constraint or a macro-constraint,

- AN

318 Cuarrir EiGnr HIERARCHY

(deftype cell (cell-id cell-repository cell-owner cell-name
(cell-contents ()) (cell-state @lose) (cell-rule ())
(cell-equivs ()} (cell-link ()) (cell-mark ()))

| (progn (format stream "<7S (7{TA"1.7})" (cell-id cell) (cell-pathname cell))

{(select (cell-state cell)
((@puppet) (format stream " PUPPET>"))
((@slave) (format stream " SLAVETQ["S™P
(select (cell-state (node-supplier cell))
((@king) (node-value cell))
((8puppet) ())
(otherwise
(list ‘bad-supplier
(cell-state (node-supplier cell)))))))
((8king) (format stream ""@[~s [OPPOSED]™| KING ~S>"
(plusp (node-contra cell))
(cell-value cell)))
((@friend) (format stream ""@[~s [OPPOSED)™] FRILND ~S>"
(plusp (node-contra cell))
(cell-value cell)))
({(@rebel) (format stream " REBEL ~S AGAINST ~S>"
(cell-value cell)
{if (eq (cell-state (node-supplier cell)) Rking)
(node-value cell)
(tist ‘bad-supplier
(cell-state (node-supplier cell))}}))
((@dupe) (Format stream " DUPE =S AGAINST ~S>"
(celli-value cell)
(if (eq (cell-state (node-supplier cell)) @king)
{node-value cell)
(list ’‘bad-supplier
(cell-state (node-supplier cell))))))
{(otherwise (format stream " BAD STATE “S>" (cell-state cell))))))

Compare this with Table 6-4 (page 206).

TABLE8-2. New Printing Formuat for Cells.

Note the user of the function con-pathname in the printing code for constraints and
macro-constraint. This causes a constraint to print like this:

<TC.ADD:ADDER>

which is the add device (an adder) of macro-constraint tc. Similarly, the printing format for
cells is changed (T'able 8-2) to something like:

CCELL-78 (TC.ADD.B) PUPPET>

for the b pin of that samce adder.

The construction of pathnames is shown in ‘Table 8-3. All that is necessary is to start from a

given object and trace up the hicrarchy of owners. ‘The resulting pathname is a list of names, with
the (global) name of the ultimate owner first, followed by successive selector names.

e ————

b

)
"

§8.22 Dnplementation of Parsing and Muacros 319

(defun cell-pathname (cell)
(require-cell cell)
(cond ((null (cell-owner cell)) (list (cell-name cell)))
((constraint-p (cell-owner cell))
‘ (nconc (con-pathname (cell-owner cell))
' (list (aref (ctype-vars (con-ctype (cell-owner cell)))
5 {cell-name cell)))))
: ((macro-constraint-p (cell-owner cell))
{nconc (con-pathname (cell-owner cell))
(1ist (aref (mctype-allvars (mcon-mctype (cell-owner cell)))
{(cell-name cell)))))
(t (lose "Bad cell owner =S for “S." (cell-owner cell) (cell-id cell}))))

(defun con-pathname (con)
(cond ((constraint-p con)
(con-pathname-1 (con-owner con) (con-name con)))
((macro-constraint-p con)
(con-pathname-) (mcon-owner con) (mcon-name con)})
(t (lose "Not a constraint: “S" con))))

(defun con-pathname-1 (owner name)
(cond ((null owner) (list name))
(t (require-macro-constraint owner)
(nconc (con-pathname owner)
(1ist (car (aref (mctype-creations (mcon-mctype owner))

name)))))))

Tasre8-3. Construction of Pathnames for Cells and Devices.

(defun cell-goodname (cell) ¥
(require-cell cell) 5
(cond ((globalp cell) (cell-name cell)) =

((or (eq (cell-rule cell) sconstant-rules)
(eq (cell-rule cell) »default-rules) 1

(eq (cell-rule cell) sparameter-rulas))
(1ist (cell-name cell) (cell-contents cell)))
| (t (cons ’the (cell-pathname cell)))))

Compare this with ‘Table 6-53 (page 280).

TARLES-4. The Best Name for a Pin Is fts Pathname,) k

'The function cel1-goodname can be simplificd by letting it usc ce11-pathname (Table ,
8-4). |1

320 CuArtiR EIGUT HIFRARCHY

8.2.2. Owners Can Now Be Constraints or Macro-constriints

There are many places in the code which check for owners of cells, and which formerly re-
quired such owners to be constraints. Now an owner can be a constraint or a macro-constraint.
Lrror checks must be modified to permit cither kind of owner. Rather than reprinting many lines of
code just to show these simple modification, | will just describe the changes here.

Functions which used to require constraints and now must permit cither constraints or macro-
constraints: gen-ce11, Tablc 6-6 (page 211).

Functions which tested the owner of a celt and assumed a non-null owner to be a constraint,
and which must now test that it is in fact a constraint (rather than a macro-constraint); awaken,
‘Table 6-28 (pagc 245); why(in the case that the cell has no value), Table 6-52 (page 279);
why-how(it now tests that the owner is a constraint purely for error-checking purposcs), Table
6-53 (pagc 280). fast-expunge-nogoods-markand fast-expunge-nogoods-unmark,
Table 6-40 (page 264); desired-premises-constraintand desired-premises-unmark,
‘lable 6-55 (page 283); tree-form-trace(in the progn form), Table 6-57 (page 285);
tree-form-deep, Table 6-58 (page 286); and tree-form-unmark, Table 6-60 (page 288).

Also, there is one change in tree-form-chase (lable 6-59 (page 287)), ncar the middic of
the code:

{((cell-acwner s}
(cond ((and (eq s cell) (not top)) (cell-goodname s))

)

becomes

((cell-owner s)
(cond ((or (and (eq s cell) (not top))
(macro-constraint-p (cell-owner s})))
(cell-goodname s))

)

the cffect being that if the chase comes to a cell owned by a macro-constraint then it must be a
puppet, an artificial supplicr, and so the chase may as well end there.

§823 Implementation of Parsing and Macros 321

|(defmacro create (name type &optional (info ())) *(screate ‘,name ,type ,info))

J(defun ecreate (name type info)

(prog2 (sdestroy name)
(gen-constraint type name () info)
{run?)))

(defmacro destroy (symbol) :(sdestroy ’,symbol))

I(derun sdestroy (symbol &optional (forced ()))
(require-symbol symbol)
{and (boundp symbol)
(let ((val (symeval symbol)))
(cond ({(cell-p val)
(cond {((and (globalp val) (eq (cell-name val) symbol))
(sdetach val)
{makunbound (cell-id val))
(makunbound symbol))
(t (lose "1llegal re-declaration of ~S." symbol))))
({(constraint-p val)
| (cond ((or forced (eq (con-name val) symbol))
(forarray (p (con-values val)) (=detach p))
{(makunhound symbol))
(t (Yose "I1legal re-declaration of “S." symbol})))
((macro-constraint-p val)
{cond ((or forced (eq (mcon-name val) symbol))
(forarray (p (mcon-values val)) (sdetach p))
(forarray (d (mcon-devices val)) (sdestroy d t))
(makunbound symbol))
{t (lose "I1legal re-declaration of ~S." symbol))))
((or (constraint-type-p val)
| (macro-constraint-type-p val)
(repository-p val)
(rule-p val))
(lose "Illegal re-declaration of ~S." symbol))
(t (makunbound symbol)))))

‘done)

Compare this with Table 6-11 (page 217) and Table 6-41 (page 265).

Tanti 8-S, Creatng and Destroying Things.

8.2.3. Muacro-constraints Cian Be Created and Destroyed

The create form. which specifics a namc for a constraint and the constraint-type to instan-
tiate, now permits a third argument form to be supplicd (Table 8-5). This third form, it present, is
used to fillin the info component of a constraint.

The reutine sdestroy has been maodified to be able to destroy macro-constraints, and not to
destroy macro-constraint-types. Also, the new argument forced is a lag which forces constraints

322 CuApPTER FIGIT HiERARCHY

and macro-constraints 1o be destroyed despite the crror-check that their names be symbols; this is
needed in order to recursively destroy sub-devices of a macro-constraint.

§8.23 Implementation of Parsing and Macros 323

l(defun gen-constraint (ctype name &optional (owner ()) (info ()))
(statistic gen-constraint)
(and owner (require-macro-constraint owner))
(if owner (require-integer name) (require-symbo) name))
(cond ((constraint-type-p ctype)
{let ({(c (make-constraint)))
(or owner (set name ¢))
(setf (con-name c) name)
(setf (con-ctype c) ctype)
(setf (con-owner c) owner)
(setf (con-values c)
(array-of (fortimes (j (array-length (ctype-vars ctype)))
(gen-cell j c))))
{setf (con-info ¢)
{(if (ctype-initfn ctype)
(funcall (ctype-initfn ctype) c info)
info))
(doarray (bucket (ctype-forget-rules ctiype))
(dolist (rule bucket)
(and (null (rule-triggers rule))
(enqueue-rule rule c @forget))))
c))
((macro-constraint-type-p ctype)
(let ((c (make-macro-constraint)))
{or owner (set name c))
(setf (mcon-name c) name)
(setf (mcon-mctype c) ctype)
(setf (mcon-owner c) owner)
{(setf (mcon-values c)
(array-of (fortimes (j (array-length (mclype-allvars ctype)))
(gen-cell j c))))
(setf (mcon-devices c)
(array-of (fortimes (j (array-length (mctype-creations ctype)))
(let ((x (aref (mctype-creations ctype) j)))
(gen-constraint (cadr x) j c (caddr x)})))))
(funcall (mctype-connector ctype) c)

c})
(t (lose "”S not a constraint-type or macro-constraint-type."” ctype))))

Compare this with Table 6-11 (page 217).

TABLE 8-6. Generating a Constraint or Macro-constraint.

The function gen-constraint, which is used by create, is now capable of instantiating
cither a constraint-typc or a macro-constraint-typc. Morcover, an instance may have an owner now
(which must be a macro-constraint), and if so the name will be an integer rather than a symbol.

When a macro-constraint-type is instantiated, a macro-constraint is crcated and its name,
mctype. and owner slots arc filled in. Then a cell is gencrated for every variable of the macro-
constraint, as determined by the allvars array of the mcetype. and these are stored in a corresponding
array in the values component. Next all the devices needed by the defining network are created
(this will involve recursive calls to gen-constraint); these are stored in the devices array.

324 CHAPTER BIGHTY

HirrARCHY

- —_
(defmacro the (x y) *(sthe ’,x ,y))
l(defmacro my (x) *(the ,x =mes))

(defun sthe (name con)
{or {(cond ((constraint-p con) (lookup name con)}
((macro-constraint-p con) (macro-lookup name comn))
(t (lose "Not a constraint: S." con)))
(lose "7S has no part named ~S." con name)))

(defun lookup (name thing)
(require-constraint thing)
(let ((names (ctype-vars (con-clype thing)))
(ceils (con-values thing)))
(fet ((n (array-length names)))
(do ((j O (+j 1))

(=3 n) ()
(and (eq (aref names j) name) (return (aref cells j)))))))

{(defun macro-lookup (name thing)
(require-macro-constraint thing)
(let ((names (mctype-allvars (imcon-mctype thingj))
(cells (mcon-values thing)))
(let ((n (array-length names)))
(do ((j 0 (+] 1))
(= jnm
(let ((creations (mctype-creations (mcon-mctype thing)))
(devices (mcon-devices thing)))
{let {{(m (array-length creations)))
(do ((k 0 (+ k 1)))
((= km) (1)

(and (eq (car (aref creations k)) name)
{return (aref devices k)))))))
(and (eq (aref names j) name) (return (aref cells j)})))))

Comparc this with Tablce 6-32 (page 253).

Tam:8-7. Looking Up Parts of a Macro-Constraint.

Finally, the connector function is applied to the macro-constraint instance in order to wire up the

network.

8.2.4. 'The the Construct Can Refer to Parts of a Macro-Device

The the construction must now be able to locate named parts of cither constraints or macro-
constraints. The function =the now merely divides into two cases; for macro-constraints it calls
macro-Yookup, which scarches first the names array and then the creations array of the
macro-constraint-type. When a matching name is found, the corresponding clement of the values

or devices array of the macro-constraint is returned.

The my macro is included as a convenience: “my x™ is the some as “the x of =mes+". (Sce

Table 8-1.)

§8.2S5 Implementation of Parsing and Macros 325
(defconst @quit (list ‘Aquit)) ;quit from consys loop
(defconst @nothing (list ’@nothing)) .something the consys loop won’t print
(defun consys ()
(let ((rubout-handler ()) ;variables controlling the
(read-preserve-delimiters ())) ; Lisp Machine RLAD function

(format t ""&:;Welcome to The Constraint System.")
(consys-loop "]:")))

(defun consys-loop (prompt)
(do () (()) ;do forever (until explicit return)
(format t "“%TA" prompt)
(setq - (si:read-for-top-level))
(and (eq - @quit) (retura))
(setq // (multiple-value-list (evaluate-input -)))
{setq ses as)
(selq »s =)
(setq = (car //)) ,save first value
(dolist (value //)
{cond ((not (eq value @nothing))
(terpri)
(funcall (or prinl #/'prini) value))))
(setq +++ ++)
(setq ++ +)
(setqg + -)))

TasLE8-8. The Top-Level “Read-Fval-Print™ Loop for the Constraint System.

8.25. A “Read-Fval-Print” Loop Processes User Requests

We have discussed all the changes to previously existing code; these had primarily to do with
the introduction of macro-constraints. The all-new code to be discussed has primarily to do with
the newly introduced surface syntax. It includes a top-level processing loop and a parser. ‘'The
loop is responsible for reading user input, parsing and cvaluating it, printing any results, and then
iterating. Parsing occurs in iwo stages: the 11SP function read rcads in a string of characters and
produccs a 1 1SP S-expression, which is then further processed by the parser to be presented here.

The top-level foop is shown in Table 8-8. [t is typical of 1.1Sp interaction loops, and uscs the
MACLISP/Lisp Machine LISP conventions for “interaction variables™. "The variable + always holds
the last thing typed in by the user, and ++ and +++ the two things before that. 'The variable -
has the expression being processed. ‘The variable // has a list of all the values returned as a rsult
of evaluating the last cxpression, and » has the first of these values, s+ and ==+ beign carlier
instances of ». These variables arc purcly for user convenience, so that he can refer to partial
results withoul losing them if he forgot to sct some variable to the computed value.

ey —
-

\‘.

326 CuapritR FIGHT HIiERARCIHY

The important thing about this loop is that it handles the user interaction, prompting, reading,
processing, and printing. ‘The two constants @quit and @nothing provide special control. One
causcs the loop to terminate, reverting to the LISP system: the other is a “magic value™ that will
not be printed. This allows a request such as == or why to print nothing, rather than DONE
or Q.E.D. (which some users find annoying). Though those trivial changes arc not shown here,
functions such as why should in fact be altcred to return @nothing afier printing a message.

PRCENN

-
e o

iz

‘....uhi;t;..

|
§8.2.6 Implementation of Parsing and Macros m ’

(defun evaluate-input (input) |
(cond ((or (atom input) (eq (car input) ‘the})
(eval (parse-thing input)))]
((and (symbolp (car input)) (get (car input) ‘request))
(eval (cons (car input) i
(forlist (x (cdr input)) (parse-thing x))}))
((eq (car input) ’'defcon) (define-macro input)) '
((eq (car input) ‘destroy)
{(dolist (x (cdr input)) (sdestroy x}))
((eq (car input) ‘lisp) (eval (cadr input))) r
(t (multiple-value-bind (creations equations definitions)
(parse-statements (1list input) () ())
(dolist (stmt creations) (eval stmt)) [
(dolist (stmt equations) (eval stmt)))]
@nothing))) ’

(dolist (x ’(stats reset-stats variable queue-stats reset-queues
run? disallow change retract forget dissolve detach
disconnect disequate why why-ultimately what)) |

(putprop x t ‘request))

TABLE8-9. Discrimination of Input Forms. .

8.2.6. User lnput Forms Are Divided into Three Categories

The top-level loop calls evaluate-input (Table 8-9) to process the user input. This func- |
tion categorizes the input form as a statement (a create, ==, or vector form), a request, or a)
descriptor for a thing (which at the top level is interpreted as a request for the value of that thing). '
Atoms and the-forms are things. A list whosc first clement is a symbol with a non-null request
property is a request (note the definitions of such propertics by the dolist form in Table 8- i
9); such requests are assumed to take “things”™ as their arguments. The defcon and destroy '
requests arc handled specially, because they take things other than “things” as arguments. A list
whose first clement is 1isp is an escape, so that LISP expressions can bhe cvaluated easily from
within the consys loop; this is a special user convenicnce, not strictly spcaking part of the
supported constraint language. Any other form is taken to be a statcinent.

8.2.7. Decfining a Macro Generates a Macro-Constraint-Type

The function define-macro parscs a defcon rcquest of the form described in §8.1.2.
After the picces of the form have been picked out and checked, two “environment”™ structures are
crecated, one for cells and once for constraints. Each environment is a list cell whose cdr is an a-list
(the a-list for deviccs is initially empty). ‘The car is not uscd for anything; the use of a header cell
allows ncw cntrics to be added by using a side-cffect. Each a-list pair consists of a name and a flag;

i B e e

328 CHAPTER KIGHT HUFRARCHY

r(~;!efun define-macro (input)
(let ((name (if (atom (cadr input)) (cadr input) (caadr inpul)))
(symbol (il (atom (cadr input)) (cadr input) (cadadr input))})
{pins {caddr input))
(body (cdddr input)))
(require-symbol name)
{require-symbol symbol)
(Tet ((conenv (1ist ‘conenv))
(celleav (cons ‘cellenv (forlist (p pins) (require-symbol p) (list p)))))

(multiple-value-bind (creations equations definitions)
(parse-statements body cellenv conenv)
(gen-macro-constraint-type name
symbol
pins
(forlist (x (cdr cellenv)) (car x))
creations
equations)}))))

TABLEB-10. Processing a Macro Definition.

in conenv the flag indicates whether a create for that device has been encountered yet, and in
cellenv the flag is unuscd. (The environments have the same structure so that common routines
can process ticnt.) Initiatly all the pin names arcin cellenv,

The body of a macro definition should be a list of statements, and these are parsed in the
given environments. (The parsing process may alter the environment structures.) "The statement
parsing produces three results: a list of create forms, alist of == forms, and a list of defcon
forms (which result only from vector forms, and can be ignored (as they arc here) because they
are processed when generated). ‘The creations and cquations, along with all the names now in
cellenv arc passced to gen-macro-constrain-type.

e e

§8.27 Implementation of Parsing and Macros 329

(defun gen-macro-constraint-type (name symbol pins allvars creations equations)
(require-symbol name)
(sdestroy name)
{let ((ct (make-macro-constraint-type)))
(set name ct)
(putprop symbol name ’‘ctypename)
(setf (mctype-name ct) name)
{setf (mctype-pins ct) (array-of pins))
(setf (mctype-allvars ct) (array-of allvars))
(setf (mctype-creations ct)
(array-of (forlist (c creations)
(or {eq (car c) ‘create)
(lose "Non-creation =S for GEN-MACRO-CONSTRAINT-IYPE." ¢))
(or (and (boundp (caddr c))
(or (constraint-type-p (symeval (caddr c)))
(macro-constraint-type-p (symeval (caddr c)))))
(lose "Not a defined constraint-type “S." (caddr c)))
(list (cadr c) (symeval (caddr c)) (cadddr c)))))
(let ((codename (gen-name name ’‘connector)))
(setf (mcilype-connector ct) codename)
(fset codename :(named-lambda ,codename (smes)

(let ((srun-flags ()))
,@equations

(run?))))

(compile codename))

ct))

Tas e 8-11. Generating a Macro-Constraint-Type

This function (Table 8-11) generates a macro-constraint-type data structure. ‘The name, pins,
and allvars slots arc filled in. The list of creations is pre-processed. in that the keyword create
is removed, and the name of the type to be instantiated is replaced by the data stiucture for the
type itself, which must be a constraint-type or a macro-constraint-type. Finally, the connector
function is constructed from the list of equations. These cquations will all refer to a local vari-
able x as “(my x), using the my macro of Table 8-7, so all that is nceded is to exccute these
cquations where the 1ISP variable sme= is defined. Also, the «run-flags is bound to ()
to prevent propagation from occurring until the whole network is wired, to avoid wasted cffort.
Once a lambda-cxpression (actually a Lisp Machine 11SP "named-lambda™ expression) has been
constructed, it is assigned to the “function cell” of a generated 11SP symbol, and then the compile
function is applicd. The resultis that the connector function is a compiled 115P function. (FThe call
to compile could be omitted, and everything would still work, only more slowly.)

Y

330 CHAPTER EIGHT HIERARCHY

(dqclaré (special sinputss sequationss screationss sdefinitionss))

(defun parse-statements (inputs cellenv conenv)
(do ((+inputss inputs)
(*equationss ‘())
(screationss /())
(edefinitionse /()))
((null «inputss)
(dotist (x (cdr conenv))
(or (cdr x) (format t ""&;Warning: constraint S not defined.” (car x))))
(return screationss sequationss sdefinitionss))
(let ((stmt (pop =inputss))) !
{cond ((atom stmt) (lose "Internal error: atomic statement “S." stmt))
((eq (car stmt) /==)
(let ((things (forlist (z (cdr stmt))
(parse-thing z cellenv conenv ()))})
(do ((th things (cdr th))) . ‘
((null th)) !
(dolist (x (cdr th)) (push *(== ,(car th) ,x) sequationss))))) :

((eq (car stmt) ‘create)
(push stmt *creationss)
(and conenv
(et ((slot (assq (cadr stmt) (cdr conenv))))
(cond {(null slot) (push (cons (cadr stmt) t) (cdr conenv)))
{({(null (cdr slot)) {(rplacd slot t))
(t (lose ";Constraint S multiply created.”
(cadr stmt)))))))
({eq (car stmt) ’vector) :
{parse-vector (gen-name ’‘vector) E
(cadr stmt) (caddr stmt) (cadddr stmt) (cddddr stmt})) }
((and (not (atom (car stmt}))) (eq (caar stmt) ‘vector))
(parse-vector (cadar stmt)
(cadr stmt) (caddr stmt) (cadddr stmt) (cddddr stmt)})

(t (parse~-constraint stmt t))})))

EN

T

TABLE 8-12. Parsing Statements.

8.2.8. Statements Are Reduced to Simple Statements

The function parse-statements (Table 8-12) maintains a queuc » inputse, which is a
queue of statements to be processed. The resuits will be a list of cquations, a list of creations, and t
a list of (already processed) definitions (which is returned primarily so that parse-statements
can be tested independently of the rest of the system and the results cxamined).

The == statement is gencralized so that more than two things can be cquated; cach thing is
dircctly cquated to every other thing (so that cquating n things results in 3'(—"2:—'—) binary cquatings).

The things are all parsed using parse-thing.

§828 Implementation of Parsing and Macros 331

A create statcment is output to the screationss list, and an cntry is located or created
in conenv if that environment is not null (the environments are null for top-level statements and
non-nul! when parsing statements for a macro body).

&

Loa

332 CHAPTER EIGHT Hi:RARCHY

(defun parse-constraint (form stmtp)
(cond ((symbolp (car form))
(parse-constraint-pins
(car form) () (cdr form) stmtp))
((and (not (atom (car form)}))
(symbolp (caar form))
(symbolp (cadar form))
(null (cddar form)))
(parse-constraint-pins
(caar form) (cadar form) (cdr form) stmtp))
{t (lose "Unknown form: ~S." form))))

1(defun parse-constraint-pins (ctypesym userconname arguments stmtp)
(require-symbol ctypesym)
(and userconname (require-symbol userconname))
(or stmip (memq ‘% arguments) (push ‘% arguments))
(let ((ctypename (get ctypesym ‘ctypename)))
(or (and ctypename (symbolp clypename))
(lose "S is not the symbol for any constraint-type." ctypesym))
(let ((ctype (symeval ctypename})
(conname (or userconname (gen-name ctypename))))
(or (constraint-type-p ctype)
(macro-constraint-type-p ctype)
(lose "Unknown constraint type: ~S.” ctypename))
(et ((pinarray (if (constraint-type-p ctype)
(clype-vars clype)
(mctype-pins ctype))))
(let ((args (cond ((= (length arguments) (array-length pinarray)) arguments)
((= (length arguments) (+ (array-length pinarray) 1))
(reverse (cdr (reverse arguments))))
(t (lose "Wrong number of arguments to ~S$: ~S.~
ctypename arguments))))
(info (and (not (= (length arguments) (array-length pinarray)))
(car (last argunents)))))
(push ¢(create ,conname ,ctypename ,B8(and info (1list info))) sinputss)
(let ((result {)))
(do ((j 0 (+j1)
(a args (cdr a)))
({(= j (array-length pinarray)))
(cond ((eq (car a) '%)
(cond (result
(lose "Multiple %’s to "S: “S." clypename arguments))
((not stmtp)
(setq result *(the ,(aref pinarray j) ,conname)))
(t (lose "Statement fed % to "S: ~S."
ctypename arguments))))
({(not (eq (car a) '?))
(push ¢(== (the ,(aref pinarray j) ,conname) ,(car a))
sinputss))))
result))))))

TanL1:8-13. Parsing an ~Algebraic Expression™.

Vectors are fanned out to parse-vector. All other forms are assumed o be network
descriptions expressed in the nested algebraic form.,

§8.28 Implementation of Parsing and Macros 333

The function parse-constraint (Table 8-13) detcrmines whether or not the constraint
1o be generated has been given a name by the user. The function parse-constraint-pins
dcals with the details of the % and ? conventions, performs crror checking, and then decomposes
the form into cquivalent create and == statements which are then cnqueued on =inputss
for re-processing. ‘The flag stmtp is truc iff the given form is a statement (imiplying that no % is
permitted). in which case () is returned, If stmtp is false, then the value is a namc for the pin
corresponding 1o the (explicit or implicit) occurrence of %.

i

s Soiwa il s

RSPy S

334 Cuarrer FlGur HIERARCHY

(defun parse-thing (thing &optional (cellenv ()) (conenv ()) (simpiep t))
(cond ((numberp thing) *(constant ,thing))
((symbolp thing)
{parse-recursive-symbol (get-pname thing) cellenv conenv thing))
((atom thing) (lose "Unknown atomic thing: “S.” thing))
((and (memq (car thing) ‘(default parameter))
(fixp (cadr thing))
(null (cddr thing)))
thing)
((eq (car thing) ‘global)
(parse-global-symbol (cadr thing) t))
((and (eq (car thing) ‘the) (cddr thing))
(parse-the (cdr thing) conenv))
({not simplep)
(parse-thing (parse-constraint thing ()) cellenv conenv ()))
(t (lose "Non-simple thing: ~S." thing))))

Tamk 8-14. Parsing u Reference o a Thing.]

(defun parse-recursive-symbol (pname cellenv conenv thing)
(let ((pos (string-reverse-search-char #/. pname)))
{(cond ({null pos)
(parse-simple-symbol (or thing (intern pname))
(if thing cellenv conenv)
(not (null thing))))
({(zerop pos)
(parse-global-symbol (intern (substring pname 1)) (not (null thing))))
(t *(the ,(intern (substring pname (+ pos 1)))

,(parse-recursive-symbotl
(substring pname 0 pos) cellenv conenv ()))))))

TABLE 8-15. Parsing a Pathname Written with Periods.

8.29. Pathnames with Periods Are One of Many Forms of Reference

The function parse-thing reduces a reference to a “thing™ to cither a simple variable
name, a pathname, or a constant or similar form. A number is converted to a constant form,
so that onc may writc (+ x 3) rather than (+ x (constant 3)). Symbols are cxamined for
periods by parse-recursive-symbol. A default or parameter formn stands as written,
A global form refers to a global variable, and is given to process-global-symbol. A the
forin has its own processor. Anything clse is regarded as a nested algebraic expression, which must
have an explicit or implicit % in it; parse-constraint is used to parsc that form and return
the name of a pin, which is then (for generality) re-processed by parse-thing.

Bl

§8.29 Implementation of Parsing and Macros 335

(defun parse-simple-symbol (sym env cellp)
(require-symbol sym)
(cond ((null env) (parse-global-symbol sym cellp))
((assq sym (cdr env)) ¢(my ,sym))
(t (push (list sym) (cdr env)) *(my ,sym))))

TABLE 8-16. Parsing a “Simple”™ (Ha!) Symbol.

Atomic symbaols are pulled apart by parse-recursive-symbol (Vable 8-15). Ifa*."is
found in the print name of the symbol, then the symbaol is divided into two parts, the part before
the Jast ™. and the part after it. ‘The part after is the selector for a the form, and the part before
is recursively parsed. As an efficiency trick. thing is passed in, so that if the name contains no .~
then the thing can be returned directly without the expense of a calt to intern. Also, a leading
“.™ indicates a global symbol, as discussed in §8.1.3.

When not within a macro body. all symbols are global. Within a macro body, a simple symbol
(not explicitly made global by a leading **." or use of the global form) is local, implying that
it must be entered into the environment and that it should be referred to as “my™ (that is, the
macro’s) symbol. The function parse-simple-symbol (FTable 8-16) performs these operations.

5

R i

336 ClUAPTER KIGUT HIERARCHY

(defun parse-global-symbol (sym cellp)
(require-symbol sym)
{cond ((not (boundp sym))
(cond (cellp
(putprop sym t ‘special) .compiler nonsense
(set sym (gen-cell sym)))))
({not cellp)
(or {(constraint-p (symeval sym))
(macro-constraint-p (symeval sym))
(format t ""&:Warning: ~S has a non-constraint value ~S."
sym (symeval sym)}))
(t (or (and {celi-p (symeval sym))
(globalp (symeval sym)))
(format t "“&:Warning: S has a non-cell value "S."
sym (symeval sym)))))
sym)

Tami:8-17. Parsing a Global Symbol.

(defun parse-the (1list conenv)
(if (nuld (cdr list))
(parse-simple-symbol (car list) conenv ())
t(the ,(car list) ,(parse-the (cdr list) conenv))))

Tanik8-18. Parsing a the Expression.

If a global symbol has no (11sp) value, then a cell is automatically generated for it in
parse-global-symbol (lable 8-17). This relicves the user of the constraint language from
having to declare all his variables. If it docs have a valug, then it had betier be the desired kind of
object (a cell or a constraint, as determined by the flag ce11p).

‘The only purpose of the function parse-the (Table 8-18) is to allow cxtended pathnames
of the form (the a b ¢ ...). This could just as casily have been put into the 1iSP macro
definition of the, but | thought it would be more appropriate to do it here, as part of the move
away from dependence on the tsP cvaluator.

8.2.10. Vectors Are Fasily Defined in Terms of Macros

The function parse-vector (lable 8-19) reduces a vector statcment to cquivalent state-
ments and two macro-constraint-type definitions, one for the body and one fur the vector of the
body. ‘The define-macro function of Table 8-10 is applicd to the two definitions to cause the
macro-constraint-types 1o cxist immediately: unfortunately, this must be done before the other
statemients can cven be parsed properly. An example of the results of processing a vector form
appears in §8.1.4. :

§8.3 Example of the Use of Macro-Constraints RRY)
(defun parse-veclor (vectorname size interface common body)
(require-integer size)
(let ({vectortypename (gen-name ‘vector-type))
(bodyname (gen-name ‘vector-body))
(vectordevices (fortimes (j size) (intern (format () ""D" j)))))
(do ((x interface (cdr x))
(Vowpins ‘() {cons (cadar x) Yowpins))
(highpins ‘() (cons (caddar x) highpins)))
((oull x)
(let ((bodydef
+(defcon ,bodyname ,(append lowpins highpins common) ,@body))
(vectordef -

(defcon ,vectortypename ,{append lowpins highpins common)
,@(do ((d veclordevices (cdr d))
(tow lowpins (forlist (h highpins) «(the ,h ,(car d))))
(s '() (cons +((,bodyname ,(car d))
,8low
,8(if (cdr d)
(forlist (ignore highpins) '?)
highpins)
,@common)

$)})
((null d) (reverse s))))))
(define-macro bodydef)
(define-macro vectordef)
(push bodydef sdefinitionss)
{push vectordef sdefinitionse))

(push +((,vectortypename ,vectorname)
,@8(forlist (x interface) (car x))
,@(forlist (x interface) (cadddr x))
,@common)

sinputss}))))

TABLES-19. Parsing a vector Statement.

8.3. Example of the Use of Macro-Constraints

Here we will define a macro-constraint-type which will constrain onc number to be the gcd
of two others, using the formulation of §1.1.1. 1t will usc a vector, the body of which performs one
step in the simplified (using subtraction rather than division) Fuclidean algorithm. We will start in
the 11SP system, and enter consys.

(consys)
;Welcome to The Constraint System.
J:(defcon gcd? (x y g)
((vector v) 7 {(x qin qout end1) (y rin rout end2)) (g)
(== rout qin)

0338 ClUAPTER RIGHT HIFRARCIHY

S N

=1

+ _:]__ {qout

fin + 1 r;ut
L]

=]e:

1}
L

FIGURE 8-4. Onc Stage of a GCD Computation.

(<! p qin rin)

(gate p qout (+ rin qin %))

(gate (+ 1 p %) qout (+ qin rin %))

(gate (= qout 0) rout g)))
{Macro-constraint-type GCD7>

The *]:™ is the (vather silly-looking) prompt for user input to the constraint system. Our first
input defines a macro-constraint-type gcd7 which constrains g to be the greatest common divisor
of x and y provided that it c.in be found in seven substraction steps or fewer. (We will have more
to say later about this arbitrary limitation?) It was certainly written with a functional view in mind,
and so { shall describe it that way; but it is written in a constraint language, and so of course can
“run backwards™ to the extent perimitted by its structure and the local propagation technique.

An instance of gcd? is a vector of seven steps. Fach step (sce IFigure 8-4) has (wo pins on the
leftcalled qin and rin and two on the right called gout and rout (which connectto the qin
and rin of the next step to the right). In cach stage, rout is cqual to qin, and qout is cqual to
cither the difference between qin and rin or the difference between rin and qin. The value

o) e

o

i 2nd

§8.3 I'xample of the Use of Macro-Constraints 339

of p determines which one is used; p is derived by cmnf;aring qin and rin in such a way that
gout will be the pusitive difference. Finally, g is equal to rout if qout is zero. It is casy to sce
the the ged of qout and rout is the same as that of gin and rin, and that if qout is zcro then
rout must in fact be the ged.

The boundary conditions are that the qin and rin of the lefimost stage are equated to x
and y respectively. The variables endl and end2 could have been question marks; they are not
used for any thing in particular, but using nanes will allow us to examine them,

Now let us create an instance of ged7 called foo, and set x to 6 and y to 10.

}:((gcd? foo) 6 10 answer)
J:answer
<CELL-79 (ANSWER) SLAVE 2>

Note that no result was printed for the creation of the instance (because the top-level loop saw
the "magic value™ @nothing). The result answer is indeed 2.
We can now look at various cclis of the network and inspect their values.

]:foo.endl
<CELL-81 (FOO0.END1) SLAVE 2>
J:foo.end2
<CELL-83 (FOO.END2) SLAVE 0>

The two final values are 2 and 0, which is consistent with a ged cqual to 2.

J:foo.v.0.qout
<CELL-473 (F00.V.0.Q0OUT) SLAVE 4>
}:foo.v.1.qout
<CELL-413 (F00.V.1.QOUT) SLAVE 6>
]:foo.v.2.qout
<CELL-353 (F00.V.2.Q0UT) SLAVE 2>
J:foo.v.3.qout
<CELL-293 (F00.V.3.Q0UT) SLAVE 4>
):foo.v.4.qout
<CELL-233 (Ff00.v.4.Q0UT) SLAVE 2>
J:foo.v.5.qout
<CELL-173 (F00.V.5.Q0UT) SLAVE 2>
):foo.v.6.qout
<CELL-109 (F00.V.6.Q0UT) SLAVE 0>

"I'his is the sequence of intermediate values computed. (Compare this with scquences in §1.1.1).
Note how casily we can refer to parts of parts of a vector, using the pathname notation. (We can
also examine constraints as well as cells:

J:foo.v
<FO0.V:VECTOR-TYPE-65>

T

{
340 Chaprer BiGir HiERARCHY :i

J:foo.v.4
<FO0.V.4:VECTOR-BODY-66>

though that is not officially part of the language.)
Now let us examine how the value for answer was deduced.

]:(why answer)

:The value 2 is in ANSWER because it is connected to (THE FOO V |6 GATE-73 8)
: and <FO0.V.6.GATE-73:GATE> computed it by rule <B~GATE-RULE-21(P,A)>

; from: CELL-113 (P) = 1, CELL-115 (A) = 2.

e

Again, no “return value™ (Q.E.D.) is printed now because why returns @nothing. ‘The
output could be cleaned up a littic by changing cell-goodname (o return not a the-style
pathname but a name with periods in it. !

SRR S UV

PR Y

J:(why-ultimately answer) :
:The value 2 is in ANSWER because it is connected to (THE FOO V |6] GATE-73 B) B
: and it was ultimately derived. }‘

(1t says that it was “ultimately derived™ because only constants were involved, and constants are
now omitted from the sct of premises for a deduction.) A number of connections were involved:

;These zonnections were involved:
: (THE FOO V |6] EQUALITY-74 B) == (CONSTANT 0),

i : (THE FOO V |6| GATE-70 B) == (THE FOO V |6| ADDER-71 8),

;' (THE FOO V |5| GATE-68 B) == (THE FOO V |5| ADDER-69 B),

: (TIE FOO V |4| GATE-70 B) == (THE FOO V |4| ADDER-71 B),

;' (THE FOO V |3| GATE-68 B) == (TME FOO V |3| ADDER-69 B),

;' (THE FOO V |2| GATE-70 B) == (THE FOO V |2| ADDER-71 B),

: (THE FOO V |1) GATE-68 B) == (THE FOO V |{1] ADDER-69 B), b
; (THE FOO V |0| GATE-70 B) == (THE FOO V |0| ADDER-71 B),

;' (THE FOO V |0| ADDER-72 C) == (CONSTANT 1), 1
: (THE FOO X) == (CONSTANT 6),

;' (THE FOO V RIN) == (THE FOO X), {

[Forty connections omitted.]
: (TME FOO V |6] ADDER-72 A) == (THE FOO V |6} P),

;' (TME FOO V |6] GATE-70 P) == (THE FOO V |6] ADDER-72 B), i
:; (THE FOO V |6] QOUT) == (THE FOO V |6| GATE-70 A),

; (THE FOO V {6] EQUALITY-74 A) == (THE FOO V |6] QOUT),

;' (THE FCO V |6| GATE-73 P) == (THE FOO V |6| EQUALITY-74 P), '

; (THE FOO V |6] G) == (THE FOO V |6] GATE-73 B), -
: (THE FOO V G) == (THE FOO V |6] G),

; (THE FOO G) == (THE FOO V G),

: ANSWER == (THE FOO G).

Now let us get up the courage to ask what the entire computation was! (I have taken the
liberty of reformatting the output by inscrting white space and linc breaks.)

§84 Discussion of the Macro Language 341

}: (what answer)

;The value 2 in ANSWER was computed in this way:

ANSWER « (GATE (= (GATE (+ 1 (<! (THE FOO V |5| GATE-68 A)
(THE FOO V |4] GATE-70 A))

%)
%
(+ (THE FOO V |5| GATE-68 A)
(THE FOO V [4]| GATE-70 A)
%))
0)
(THE FOO V |5] GATE-88 A)
%)
; (THE FOO V |4| GATE-70 A) «
(GATE (+ 1 (<! (THE FOO V |3| GATE-68 A) (THE FOO V |2| GATE-70 A)) %)
%
(+ (THE FOO V |3| GATE-68 A) (THE FOO V [2| GATE-70 A) %))
: (THE FOO V |2]| GATE-70 A) «
(GATE (+ 1 (<! (THE FOO V |1] GATE-68 A) (THE FOO V |0]| GATE-70 A)) %)
%
(+ (THE FOO V |1| GATE-68 A) (THE FOO V [0f GATE-76 A) %))
(THE FOO V [0f GATE-70 A) « (GATE (+ 1 (<! 10 6) %) % (+ 10 6 %))
: (THE FOO V |1] GATE-68 A) «
(GATE (<! (THE FOO V |0] GATE-70 A) 10)
%
(+ 10 (THE FOG V {G] GATE-70 A) X))
i (THE FOO V |3| GATE-68 A) «
(GATE (<! (THE FOO V |2| GATE-70 A) (THE FOO V |1| GATE-68 A))
%
(+ (THE FOO V [1] GATE-68 A) (THE FOO V |2| GATE-70 A) %))
: (THE FOO V |5) GATE-68 A) «
(GATE (<! (THE FOO V |4] GATE-70 A) (THE FOO V |3| GATE-68 A))
%
(+ (THE FOO V |3| GATE-68 A) (THE FOO V [4] GATE~70 A) %))

For all the usc of “algebraic™ notation, this is fairly hard to wade through! Part of the problem
is that the cxplanation system doesn’t take advantage of the macro-call hicrarchy to produce sum-
mary cxplanations. One would like an explanation to go somcthing like *"I'he answer was computed
by foo.v.6 fromits qin and rin, which it got from foo.v .5, and so on, down to foo.v.0
which got its inputs from foo.x and foo.y.”

8.4. Discussion of the Macro Language

In this chapter we have added to the constraint language an abstraction capability in the form
of a simple macro mechanism, a limited iteration feature, and a front-cnd command processing

342 CuapritRr Eiour HiRARCHY

loop and parser to permit some useful syntactic abbreviations. | am pleased with the front end,
for the most part, but the macro and iteration features are clearly deficient compared with what a
uscablc constraint language requires. Here | discuss these deficiencics and possible solutions.

Every time a macro-constraint-type is instantiated, a complete copy is made of the defining
network structure. "This is wasteful of space; it is as if every time a constraint-type were instantiated
a copy were made of all the rules. Now certainly new cells must be created for cach macro-instance,
because they hold values that arc different for cach instance. ‘The reason a complete copy must be
made is that presently the connectivity information is also stored in the cells. Cells point at devices
and other cclls, which in turn point back, and these back-pointers therefore require individual
copics of cach device data structure. 1t ought to be possible to re-design the data structures in such
a way that the macro-constraint-type coniains a single copy of the connectivity and device informa-
tion as a full network with full back-pointers (presently that information is stored, but as directions
for construction, not as a network). Then an instance would contain only an array of cells, which
would determine their connectivity by referring to the “network template™ in the macro-constraint-
type. ‘This is entirely analogous to the situation with constraints and constraint-types. (Of course,
this idea trades time for space in requiring indirection to the constant, shared template. Indeed,
Borning scems to do somcething similar to this in THHINGTLAB [Borning 1979]. But such sharing may
not be desirable in a multi-processor constraint language implementation.)

A more important problem is that when a inacro-constraint is created, all of its parts must first
be fully instantiated (in the current implementation). This makes it impossible to write recursively
defined constraints. One might like. for example, to writc a factorial constraint:

(defcon factorial (f n)
(= pn0)
(gate p f 1)
(+ 1 p notp)
(factorial (gate notp f %) (+ (gate notp n %) % 1)))

This cannot work in the current implementation because in the process of creating an instance of
factorial another instance of factorial must be created, and so there is indefinite regress.
This is a standard problem with any macro-type language. It is analogous to a programming lan-
guage in which all procedure calls arc replaced by the code for the called procedure (procedure
integration) before any part of the program is run. What is nceded is a way to instantiate a macro
only partially, then compute using some of its parts, and then create the rest of its parts only
when necessary. One possible heuristic is never to instantiate a sub-macro unlcess at least onc argu-
ment has propagated 1o the call to it (the assumption being that it won’t gencrate values without
input—not always truc when the assume construct is uscd!). ‘This would allow the definition
of factorial given above to operate properly. [f one said (factorial answer 3), then
onc instance of factorial would be made, containing an cquality test, a gate, an adder, and

-

§84 Discussion of the Macro Language 343

so on, plus a dummy instance (a “procedure call’) of factorial that has not yet actually been
created. ‘The value 3 propagates from n, producing zcro for p. and so f is not gated to 1, but
instcad n is gated to the sccond adder to calculate 3 — 1 = 2. This is then visible on a pin
of the dummy instance, and so the recursive instance of factorial is created at this point to
replace the dummy instance (and this actual instance itsclf now contains another dummy instance).
After two more steps there are four actual instances of factorial nested, with the innennost
containing yet another dummy instance. ‘This last one is not actually created. however, because n is
zero and so the gates prevent any valuces from propagating to the pins of the duimy instance.

I have constructed a constraint system that operates in this manner, and it has successfully
run recursive constraint networks such as the definition of factorial given above. It is not
of the same “lincage™ as the systems presented here, however, but an offshoot of carlier, less trac-
table versions, and so I do not present the code here. Also, that version did not have retraction
capabilitics; except for the ability to handle recursive constraints, it was approximately equivalent
to the system of Chapter Three, (I attempted to add retraction capabilitics, but that interacts in
extremely complicated ways with dummy instances. 1 chose to abandon that path to concentrate on
the usc of dependencics and on dealing with networks containing multiple contradictions.)

An obvious problem with the vector construct is the restriction that the size of the vector be
fixed. One would like to have the size specified by a true constraint vagiable. One could even sct
up a general ged program that would use a vector of indefinite length: when the ged computation
was done, the size of the vector would have been determined by the computations of the body
(trying to satisfy a boundary condition)! ‘This would be very powerful. lmplementing this is roughly
the same as implementing recursive constraints; one needs a way to avoid creating instances of
things until it is clear they they are really needed. In this case, no instances of a vector body would
be created until one was nceded. (This is analogous to a while-do loop: rather than creating
all the copies of the loop body that will be needed at run time (unrolling the loop), before cach
time the loop body is exccuted a run-time check is made to determine whether it needs to be.)
Onc difficulty that docs arise with vectors is the situation where a vector 5 long is created, and
then the value 5 is retracted and 3 substituted: two copies of the body must go away, or at lcast
become ineffective (the latter course perhaps being more cconomical implementationally if there is
a chance that the 3 may become a 5 again). This requires the ability to retract or suppress network
conncctions or constraints; this ability is not provided by the current constraint system.

A song not for now you need not put siay ...
A tune for the was can be sung for today ...
The notes of the dves-noi will sound as the does ...
Today you can sing for the will-be that was.
—Walt Kcelly (1953)
Ten Ever-Lovin™ Blue-Eyed Years with Pogo

Chapter Nine

Compilation

’Enl-‘. PURPOSE OF COMPILATION is to trade more work now for less work later, by cxpending
cffort now to reduce an object to a form more casily dealt with later. In the case of our
constraint system, we seck to reduce a macro-constraint definition to the definition of a primitive
constraint.

I present here a simple conipilation technique. While the idea is simple, the dcetails arc even
more tedious than usual, and so | shall not present the code for the compiler here. “The compiler
is similar in flavor to the onc described in {Borning 1979], and also bears some resemblance to the
code-construction tecnhiques used in {Brown 1980},

‘The compiler takes a macro-coastraint-type definition and creatces an instance of it, in order to
have a newtwork structure on which to operate. 1t then performs a propagation-like process on the
network.

Supposc the macro-constraint-type to have n pins. ‘Then the compiler performs 27 passes, one
for cach pussible subset of the pins. (This exponential may scem horrendous. but [have compiled
macro-constraints with nine pins in only a short time—iess than thirty scconds.) For cach subset,
those pins are marked “given”, and then pscudo-values are propagated throughout the network.
A marker is actually a list of pins, and cach given pin is marked with a list of itself. A rule may
be used if markers are present on all its triggers, in which casc the union of the marker scts is
used (o mark the output pin (because all those values went into the deduction of that value). If a
marker reaches a pin, and the marker is the sct of all the given pins, then a rule may be constructed
relating the output pin to the input pins. This is done by tracing back through the “dependencies™
maintained during the pscudo-propagation, welding together the 11sP code for the various rules

344

345

used in the propagation process. (If a marker reaches a pin and is not the sct of all given pins, no
rule is constructed, because that rule will be obtained on another pass.) If two markers meet at a
node, then a detector rule may be constructed that signals a contradiction if the two values are not

cqual.

Assumption cclls (and &nogood rulces in general) cause difficulties because their cells may
not be “compiled out” and converted to 11sp variables. This is because the cell structure is needed
to record nogood sets. My solution to this (which 1 have not yet implemented-—the current com-
piler simply doesn’t handic &nogood rules) is to artificially move interior nodes supplied by
&nogood rules to the “houndary™ of the constraint, making them pscudo-pins. ‘Then they can
have regular cell structurcs, but tie are not real pins in that they arc not ordinary connection

points.
As an cxample of the results ot this compilation technique, consider our old standby, the

temperature converter {this definition is taken from §8.1.2):

(defcon temp-converter (f c)
((+ add) f ((= othermult) ((» muit) 9 c) § X) 32))

‘The result of compilation is the following primitive constraint definition:

(DEFPRIM TEMP-CONVERTER (F C)
(c (F)
(PROG FOO ()
(RETURN (LET ((A (s (- 32 F) §))
(C 9))
(IF (AND (NOT (ZEROP A)) (ZEROP (C A)))
(77 € A)
(RETURN-FROM FOO @DISMISS))))))
(F (C)
(PROG FOO ()
(RETURN (+ 32
(LET ((A (s C 9))
(C §))
(IF (AND (NOT (ZEROP A)) (ZEROP (C A)))
(77 C A)
(RETURN-FROM FOO @DISMISS))))))))

‘There are two rules; once computes ¢ from f angd the other computes £ from ¢. Notice that
where pussible straightforward 11SP computations are uscd, asin (» (- 32 f) 5) in the rule
for computing ¢ from f. If a valuc is to be used more than once, then a 1et form is used to name
the valuc. The prog forms arc nccessary so that if a @dismiss or @1ose operation occurs, an
immediate exit (via return-from)can be taken. If any part of a computation dismisscs, then the
whole thing dismisscs; if any part loscs, the wholc thing loscs.

I

[V

Mister Middle in the meadow

Riddled ‘round with rain.

Puzzlc you the pitter-pat

What not goes up uagain?

Ruddle you the little dew

And little do you do?

Linle did is little done. Chapter Ten

Tho little didll do.
—Walt Kcily (1959)
The Pogo Sunduy Brunch

Conclusions

’H‘ 112 RESFARCH DISCUSSED IN THIS DISSERTATION has resulted in the construction of a con-
- straint language system of fair complexity. It certainly docs not have all the characteristics
one could hope for; it is not cven a combination of all the characteristics which have been
scparately achicved by previous systems. 1t is, however, a fairly cfficient version that is perhaps
closer to being viable for a multiprocessing implementation than any other so far.

The system presented here performs computations on networks of relationships by local
propagation, using onc-step local deductions. The history of the computation is maintained in
the form of dependency information, indicating which values were derived from which others,
'This information can be uscd to cxplain the computation, in whole or by stages, and to guide the
automatic or scmi-automatic handling of contradictions or changes to the network parameters. ‘This
uscs the technique of dependency-directed backtracking, which is shown to be superior to the usual
chronological backtracking in many cases. An assumption mechanism is provided to allow guesses
and default values, and a resolution mechanism plus recording of derived premises as nogood sets
allows derived constraints to limit the explosion of combinatorial scarch,

The implementation of the system reflects the structure of the visual image of constraints as
connccted devices which gives this paradigm its intuitive power. ‘T'his Icads to some compléxity
because of the use of data structures with pointers to cach other. However, once a network is
constructed, propagation of valucs is very fast, and yet the structurc of a nctwork can be altered in
mid-computation without invalidating the semantics of the language.

A primitive abstraction capability (macros) is provided, and a simple compiler for these mac-

ros can reduce them to primitive operators.

346

nn e

%

v

§10.1 Comparisons with Other Work 347 (

10.1. Comparisons with Other Work

10.1.1. SKETCIPAD Relaxed Constraints on Geometric Diagrams

The SKETCHPAD system [Sutherland 1963] was in many ways ahcad of its time. It provided ;
graphic display output, a user interface not limited by the “Model 33 bottlencck™, and automatic r
satisfaction of constraints. A technigue amounting to pre-compilation of focal propagation paths
was used (undoubtedly similar to the methuds of Chapter Nine), which Sutherland called “the }

onc-pass method”. Where that failed, a relaxation method was used. with cach constraint being
represented by a simple subroutine which would calculate an error value as a measure of how
“unhappy” that constraint was with the cxisting values. Explicit dependency information was
not used: relaxation solved global conflicts. This was possible because the geometric domain of
SKETCHPAD is continuous, and all the constraints were equalitics among lincar relationships of
variables, so the arithmctic computations were well-behaved.

Macro-structures could be built within SKIETCIIPAD and instantiated. Such structures had
some of the properties of primitive objects, such as designated points of attachment. Moreover, ’
non-primitive objects could be identified (merged), in which case sub-parts would be recursively i
merged. The operation of merging was apparently irreversible, however.,

Given that constraints were used as carly as 1962, why were not these ideas explored further,
rather than waiting ten to fiftcen years? Onc might spcculate that the idcas were tied to graphics, j
as constraints seem to be most suited for describing objects; and furthermore that the advent of
timesharing suppressed the development of graphics for a long while (because smooth graphics
support tends to require stcady computational service and therefore a dedicated processor). This
is pure speculation, of course; but witness the growth of graphics now that personal computers are t

it s o L ek ©

widespread!

10.1.2. Data Flow Computations Use Parallel Dicectizaal Devices

The data flow languages and architectures proposed by Dennis and his colleagucs [Dennis
1973) |Dennis 1975) [Arvind 1978] are very closely related to constraint languages in that the
computation is organized as a network of processors operating in parallel on data which moves
asynchronously along wires between the devices. In the dats Row paradigm, however, wires are
pre-assigned directions along which the data fluws. The purpose of data flow is to cxpress the
sort of dircctional computations ordinary programming languages handle, without the extrancous

348 CHAPTER TEN CONCI.USIONS [

sequencing conditions which they impose by their over-restrictive control structures, ‘1he data flow ‘
nctwork itsclf expresses the necessary and sufficient sequencing for the computation. A device }’
computes a result as soon as its arguments are available. |

Data flow networks do not record dependencies. As noted in Chapter ‘Three, however, de-
pendency information can consist fargely of knowledge about in which direction data flowed along
cach wire—and this is fixed in a data flow network anyway. -

Dennis has proposed specific architectures for exccuting data flow programs cfificieatly.
[Dennis 1975) A constraint architccture is of necessity more complex because of its lack of prior i
commitment to the direction of data flow along any given wire. In cffect, a single constraint net-
work represents an centire class of data flow programs, one for cach partitioning of the network’s 1
terminals into input and output terminals; the constraint system then, in effect, determines dynami- 4
cally which data flow computation to perform. ‘Thercfore it is likely that advances in the theory '
of data flow languages may be used in the implementation of constraint systems, The language
VAl [Ackermann 1979), which is an algorithmic language in the style of algebraic languages but ;i“
permitting fleaible handling of sets of values (in particular allowing a function to rcturn more than
onc valuc without resorting to assignment of refeercnce parameters) is of especial interest.

10.1.3. Waltz's Algorithm Filters Scene Labels by Local Propagation

A local propagation technigue is used in [Waltz 1972] (and described also in {Winston 1974]

and [Winston 1977]) to limit the combinatorial scarch for Huffinan-style labellings of visual sccnes]
represented as line drawings. A line drawing itsclf forms a network structurc: the goal is to assign]
a lahelling to cach junction. ‘The Waltz filtcring algorithm propagates information only along lincs |

4

between junctions, and computation is made at cach junction only on the basis of information
flowing in along these lines. Waltz found that this technigue, while performing only local propaga-
tion and therefore unable to resolve global ambiguitics, would in practical cascs usually converge to :
an unigue solution or one with very few alternatives to be resolved by global analysis. Moreover, ﬂ
it tends to converge quickly. in time closer to lincar than exponential in the size of the network.,
Walts also realized the possibilitics for parallel computation in this formulation. (A movie which
Wallz made, well-known in Al circles, shows graphically the information propagating from vertex
to vertex, with ambiguity factors at cach vertex rapidly decreasing from the thousands to number \
like 1 or 2.) X
Waltz's representation has the advantage of simultancously representing aff valid states of the
system; it has the disadvantage of maintaining no dependency information. ‘This can be a problem
if the network is ambiguous. For example, supposc that two vertices cach have two possible labell-
ings. Onc might think this would indicate four possible states of the network, but the labellings
might be correlated in such a way that choosing a label for one vertex forces the choice for the

§10.14 Comparisons with Other Work 349

other. Waltz's system has no way to represent such corrclations. (On the other hand, the propaga-
tion technique typically does reduce the number of cases to a number feasible to enumerate and
explicitly check in order to climinate miscorrelated cascs, which was all Waltz needed.)

10.1.4. Scmantic Networks Propagiate Symbolic Tags

‘There is a line of rescarch stemming from Quillian’s work on semantic nets which deals with
the propagation of symbuolic tags, rather than computational quantitics, within a network. The
distinction 1 draw here is rather fuzzy. but in propagating symbotic tags it is the fact that two or
more tags collide somewhere that is of interest, whereas with computational quantities the arrival of
a single value at a node is of interest. That is, a value carries meaning of its own, while tags arc not
very interesting in themsclves, but bear meaning derived from the places they were first inserted
into the network.

Quillian’s scmantic nets [Quillian 1968] consisted of a set of nodes representing primitive con-
cepts with pointers among them. “The meaning of a node consists precisely of the sum total of its
relationships to other nodes. Quillian’s system could compare two concepts by propagating two
symbolic tags from the concepts and analyzing the points where they met.

Grossman used constraint expressions to represent complex data base relationships, including
but not limited to unions, intersections, and partitionings of sets. JGrossman 1976) His system
uscd complicated, multiple-component tags. One problem with his system was that ever-increasing
amounts of information are represented in the structure of individual tags rather than in the net-
work, and the structurc of a tag was not so casily amenable to analysis and propagation as the
nctwork.

Fahlman, on the other hand, explicitly uses only atomic tags, and a small number of them
at that. The primary usc of propagation in NETI. is to usc highly parallel techniques to quickly
perform sct intersection, which is one of the more difficult data basc opcrations. The ability to
propagate markers quickly in paratlel enables the use, in cffect, of templates and indirect pointers
to represent virtual copics of things, rather than making cxplicit copics; while it takes time to
follow indirect pointers (one reason [avoided them in the implementation of the macro mechanism
of Chapter Fight), the parallel techniques of netl allow many such pointers to be traced simul-
tancously.

10.1.5. Freuder's Mcthod Propagates by Synthesizing Higher-Order Constraints

In [IFrcuder 1976) a method is described for propagating constraints by synthesizing ncw ones.
The method is roughly as follows. Supposc that a network has n nodes. 1.ct cach constraint on
k nodes (k < n) be represented as an cxplicit sct of k-tuples representing valid combinations

P

d

350 Cuartir TuN CONCI.USIONS

of values for those nodes. 'Then all possible subscts of these nodes are considered, in order of
cardinality. As k ranges from 2 through n, the constraints of order k (those which relate exactly k
nodes) are synthesized from thosc of order £ — 1. More preciscly, the order-k constraint on a st
of nodes J is synthesized by combining the k constraints of order £ — 1 on subscts of J. Hence
this constitutes a sort of compilation process using a dynamic programming technique. When the
algorithm is finished. the single order-n constraint is a set of solutions for the entire network.

‘The running time of this algorithim is uncertain, On the one hand, a network of n nodes will
require synthesis of 2" constraints. On the other hand, as Freuder indicates but does not clucidate,
the entire set of constraints of order k will contain redundant information if the original constraints
were all of smatler order. He says, as an example, that in an order-4 neiwork with originally only
binary constraints, only three ternary constraints need be synthesized. He docs not give a general
rule, however. He also suggests some general heuristics about which constraints to synthesize first.

One may observe that Freuder's representation of a constraint amounts to a collection of
“good scts™, combinations of permissible values. (He explicitly assumes that cach variable ranges
over a finite sct of values. Note that the same assumption is true of the Waltz application: the
set of possible labellings for each node is large but finitc.) In constrast, the system presented in
this dissertation initially assumes that all combinations arc possible, and then uses nogood sets to
rule out invalid combinations. When the universe of discourse is finite, this does not make much
difference; but if it is infinite, then the choice of onc representation or the other does matter.
Indeed, in my system some contortion is needed to represent the fact that a node must take on one
of a finitec number of values; such a fact is enforced by a constraint which, when an invalid value
cver appears, records that value in a nogood set. In cffect, my system is biased towards infinite
“good scts”, on the principlc that until a node is constrained at all it may take on any value. Indeed,
Freuder uses, for cfficiency, a special kind of constraint, which he calls the non-constraint, which
is in cffect the set of all possibilitics. He suggests also that the propagation procedure be able to
deal with complements of sets. It is worth investigating the characteristics of a constraint system
combining explicit nogood scts with explicit good sets. |

10.1.6. PROIOG Uses Chronological Backtracking on Horn Clauses

The PROIOG language allows the programmer to write statements of predicate calculus in
Horn clause form. A PROIOG stalement is an implication whose antccedent is the conjunction of
predicates and whose consequent is a single predicate form. A typical PROLOG statement is:

arrange(cons(X,L),tree(T1,X,72)) :-
partition(L,X,L1,L2), arrange(L1,T1), arrange(t2,72).

I 'The oneof mechanism of Chapter Five constitutes an explicit representation of “good scts”, but in a manner not
well integrated with the representation of nogood sets.

s Sanibi

et e Al 05 s

L4
§10.1.6 Comparisons with Qther Work 351

(Fhis is taken from a program in [Warren 1977b] that converts between dists and binary trees.) This
may be interpreted declaratively as the statement

VXVLVT|VT2VL|VL2 (p(L, X, L|, Lz) A a(L,, T|) N a(llz, Tz)) = a(c(X, [/), t(7‘|, X, T’z))

However, the PROIOG language also provides an imperative interpretation. ‘The terin before the
"1 =" is considered to be a procedure declaration, and the terms to the right are statements of the
procedure. ‘Thus, the statement above may be read. “If you need to call procedure arrange, then
its first argument must be a cons and its second a tree, and also you must exccute three other pro-
cedure calls™. Morcover, there may be more than one “declaration”™ of a “procedure™; when a pro-
cedure must be exccuted. its various declarations must be chosen among “non-deterministically™.
(The non-determinism is implemented using chronological backtracking, as in MICRO-PL ANNIR
1777). 1f a given declaration for a procedure doesn’t work, the next declaration for that procedure is
tried; if all declarations fail, then failure propagates back to the caller, which must then try a new
declaration for the preceding term, or fail itsclf. Sce [Sussman 1972] for a critique of the method of
chronological backtracking.)

‘The PRO1OG language, like the constraint language, provides a sccondary interpretation for
its scmantically declarative constructs which is used to limit and guide deductive mechanisms. As
we have seen in Chapters Five and Six, the non-chronological backtracking mechanism is poten-
tially more efficicnt than the chronological onc used by PRO1.OG. The PROLOG implementation
keeps dependency information internally (in a specialized form made possible by the nature of
its backtracking mechanism, which allows use of a stack), becausc after merging variables during
a “procedure call” it may later have to undo the nerge on failure. However, this dependency
information is not available to the user. Conditionals are handied by a resolution pattern-matching
mechanism and explicit predicates, both of which succeed or fail. The PRO1OG compiler manages
to compile these failure mechanisms out in simple cascs, reducing the pattern-matching to simple
dispatches.

The best implementation of PRO1OG [Warren 1977a] uscs data-structure techniques similar to
those of the constraint system described in this dissertation. When two variables are identified, one
is chosen as the “repository™ for the value, and the other is made to contain an indircct pointer
to the first. (It is cleverly arranged that the “oldest™ becomes the repository, so that a repository
cannot be destroyed during backtracking if there is any indirect pointer to it. This is one of the
tricks cnabled by the usc of chronological, stack-bascd backtracking. 2)

There are many good things about PROIOG, and it deserves more popularity in this country.
If there were an implementation of PRO1LOG which had arrays, retained general user-accessible
dependency information, permitted assumptions, and forsook chronological backtracking, it might

2. Yor a discussion of the effects of the slackr implementation techaigue on the development of PROIOG, as wcell as
a good gencral discussion of the pros and cons of the language. see [McDermott 1980).

it

L

352 CHAPTER TEN CONCLUSIONS

be close to the ideal constraint language 1 have in mind. Interesting variations of PROFOG allow the
usc of non-Horn clauses [ider 1976). and the specification of control information to influence the
backtracking order in « rather ncat and intaitive way [Clark 19807).

10.1.7. 111INGT AB Provides A Class Hicrarchy and Uses Pathnames

The THINGEAR system [Borning 1979] is a constraint-based graphics system that is quite
similar in its capabilitics to SK1 1cnPAD {Sutherland 1963). Its internal organization is different,
however, and indeed somewhat more flexible. 1t is embedded within the SMATITAIK language
system (a suceessor t that described in [Goldberg 1976]) in much the sume way that imy constraint
system is embedded within the Lisp Machine LISP system. The SMALTTALK language is object-
oricnted; all computation conceptually occurs by one object passing messages to another. This is,
therefore, already very similar to a constraint system, the primary (and very large!) difference being
that the computation is directional in nature. ‘The TIHNGI AR system imiplements adirectional con-
straint computations, and takes advantage of the SMAL LTAIK class hicrarchy, which allows objects
to inherit properties from other objects. Borning indicates that the class hicrarchy is more useful
than the SKETCHPAD instance mechanisi because SMALITALK instances can have individual state
variables to parametcerize cach instance.

The TININGLAB system always compiles a network before beginning to satisfy it; this is done
for spced. Both propagation and relaxation techniques are used for constraint satisfaction. While
THINGLAB initially used only the error-computation minimization technique of SKEICHPAD, in its
final form it also has local procedures (analogous to the rules of my system) for explicitly satisfying
constraints; these were introduced in order to deal with non-numcric constraints (which | think
might better characterized as “constraints on variables over a discrete domain™).

No dependency information is retained by T1INGEAB. Borning states that this causes more
work to be done than necessary when a paraneter is changed.

Internally, while constraint networks are always compiled, parts arc always accessed at run
time by following path nanes; direct connections are not used. Borning points out that this avoids
the extensive use of back-pointers (complex pointer structures were used in SKETCHPAD and also
in the system described in this dissertation), at some time penalty for following the paths on every
access. Another advantage of symbolic pathnames is that the description of a constraint network
nced nat be copicd cvery time it is instantiated. This copying is of course a problem with the
macro mechanism of Chapter Eight: every macro-constraint instance requires a complete copy of
the defining nctwork. "T'his is necessary because not only must the celts of the instance point to the
devices of the network, but the devices must point back to the cells, In Borning's system miuch less
copying is done. On the other hand, a systemm which shares a single read-only description among

many instanccs is, [think, less amenable to a multiprocessing implementation.

§10.1.8 Comparisons with Other Work 353

HIINGI AR provides a beautiful graphical uscr interface, and ways of manipulating constraints
cither as pictures or as SMALETALK programs, However, it is not a truc programming language, nor
was it intended to be: Boring labels it a “simulation laboratory™.

10.1.8. 't and ARS Analyze Electrical Circuits by Local Propagation

The 1 {Sussman 1975] and aRS [Stallman 1977] systems were the direct intellectual ancestors
of the rescarch in this dissertation, and also inspired much of the other work at MLE. to be
described in the next tew sections. These were programs for electrical circuit analysis (actually, ARS
was an Antecedent Reasoning System in terms of which later versions of £l were implemented).
The various implementations of 11 all used local propagation (one-step local deductions) of cur-
rents and voltages to analyze circuits. This is of course a natural application for constraints, as the
constraint network corresponds direetly to the circuit diagram, and inspires a view of constraints
as active devices. While Sussman and Stallman are quick to point out that local propagation does
not work for many complex synergistic circuits, they also note that the technigue often produces a
solution much more quickly, dircctly, and intuitively than the usual technique of setting up node
or branch cquations and then solving a large sct of simultancous lincar equations. In cffect, in this
application the focal propagation technigue automatically determines the best variable to climinate
at cach step from a sct of equations for which the cocfficient matrix is sparse.

EL/ARS also kept track of dependency information, using it both for providing cxplanations
for the user and for the handling of contradictions by retracting only relevant premiscs. [t was for
this system that the terin dependency-directed backtracking was coined, as well as the notions of in
and out facts and nogood sets.

‘There has been continued work on the application of constraints to circiit analysis and syn-
thesis. {de Klcer 1978b]

10.1.9. ‘I'ruth Maintenance Systems Are General Dependency Managers

From ARS developed the notion that there could or should be a general programining system
or package which could deal with dependencics in a general way, much as a garbage collector
deals with heap storage in a general way. A serics of implementations of a language called AMORD
were produced at MLT. [Deyle 1977] [de Kleer 19784] The AMORD systein provided an indexed
data basc mechanism for recording symbolically represented facts, and a dependcencics manager
calted a truth maintenance system (TAMS) for recording logical relationships among the (otherwise

354 Cuarter TeN CoNCLUSIONS

uninterpreted) facts. 3

Jon Doyle [Doyle 19784] [Doyle 1978b] [Doyle 1979] and later David McAllester {McAllester
1978] [McAllester 1980] rescarched and implemented methods of separating more fully the Truth
Maintenance System from the data base machinery. Each deals with nodes, small 1i1Sp data struc-
tures which represent abstract fucts. Fach fact may have a truth value assoctated with it. One of
the important results of this work was realizing (or rediscovering) and institutionalizing the distine-
tion between knowing something not to be iruc and not knowing somcthing to be true. Thus a
distinction is drawn between a fact being ot (not believed) and being fulse (belicved not). Doyle’s
TMS implementations allow facts to be cither in or out, and deductions may be made on the basis
of a fact’s being in or ows. Negation (falseness of a fact) is handled by having two nodes, one for
a fact and one for its negation. and Yinking them with two rules stating that if one is known to be
in, then the other must be our. 'Thus the two nodes have four states in all, of which one (both in)
is forbidden. ‘I'he other three states correspond to the fuct being known true, known false, and
unknown.

The ability to make deductions based on nor knowing something lcads to a peculiar logic.
Doyle and McDermott have investigated the formal propertics of such a logic. [McDermott 1979)
This structure allows one to express assumptions, for example: onc may have a rule stating that if
the negation of a fact is not known 10 be true, then the fact may be deduced to be true.,

McAllester's version of a ‘Fruth Maintenance System [McAllester 1978] handles the three
states true, false. and unknown dircctly. 1t also handles assuinptions (which McAllester calls
defaults) in a special way (specially tagging certain nodes as heing automatically retractable), which
inspired the methods [have used in this dissertation. His system is a little more strecamlined than
Doyle’s, and operates somewhat differently internally. A stripped-down re-implementation of this
system has been used by Shrobe in the integrated-circuit design system DAEDAT LS [Shrobe 1980).

I originally sct out to use a version of McAlester's ™S in this research, and re-implementing
it taught me a great deal, (As it turned out, my re-implementation turned out to be surprisingly
similar to Shi be’s: we had both striven to excise the remaining vestiges of the TMS' heing tied
to a particular data basc format! 1 find this encouraging: it indicates that a “purc™ TMS package,
properly implemented, will be uscful in a number of applications.)

I decided, however, that it would be more uscful not to have to store a value in a cell and
then make a data structure to represent the fact that the cell had the value. Rather than having
Jacts with states true, false, and unknown, it scemed simpler just to let cells have states consisting of

3. Onc of my best failures was an attempl to write a simple LISP compiler in an carly version of AMORD. The idea
was that once a program was compiled an incremental change 1o the program would require only an incremental
amount of recompilation to produce new comipiled code. The use of dependency-directed backtracking would ensure
that pans of the old compilation effort which did not depend on alicred picees of the program would be preserved.
‘The first version of AMORD had a data base organized around triples. mwuch like LEAP, in arder lo gain some
imagined speed from a clever mplementation technique. (This was my fault, 1 beheve) It was the attempt to write
something as large as a compiler in terms of triples that proved the organization 10 be cxcessively unwicldy. [ater
versions of AMORD have had a richer data base structure.

g ———— -

PP

§10.1.10 Comparisons with Other Work 355

their natural domain (I chose integers) plus unknown. The resolution techniques McAllester uses
gencralize in the manner [have shown; onc need only think of the 'T'MS as operating on a many-
valued logic, if one wishes. McAllester's 'TMS represents all constraints as clauses, sets of literals
not all of which may hold (or, at scast onc of which must not hold, depending on which side of the
deMorgan coin one looks); since this is the natural form for nogood scts, such sets are represented
in the same way as any other constraint, a nice feature,

Doyle comments in [Doyle 1979] that it is uscful to have a way o explicitly represent the
situation where both a fact and its negation are believed. and so argucs against the usc of three-
valucd Truth Maintenance Systems. To be sure (Doyle argues), this situation is contradictory and
so ideally is transicnt, but nonctheless may persist for some time and must be dealt with. My system
deals with this issuc in that all facts arc of the form “cell x has value #”, and there is an explicit way
to represent the situation where cqualitics are violated. 1f one takes a cell and its value to mean rep-
resent the “fact”™ that the node (in my sense, not the TMS sensce of the data structure representating
a fact) of the cell has that value, then the various cells of a node can represent pussible facts about
that node. It remains to be scen whether this structure can persist when equalities (connections)
themselves are also considered to be questionable and retractable facts.

McAliester uses his TMS in [McAllester 1980], in which he views deducing facts as a process
of deriving better names for an object than you started out with. | have found his ideas tangentially
uscful in trying to choose good names for objects when producing explanations (cf. the function
cell-goodname in my constraint systcm).

10.1.10. A Simple Constraint Language Was Designed Two Ycars Before This

In [Stecle 1979] Sussman and 1 described a constraint language systermn which was the direct
precursor of the present work. The language allowed creation and connection of devices, and
provided a macro abstraction facility for defining devices in terms of complex networks. 1t per-
formed local propagation of values, maintained dependencies, and provided for retraction in case
of contradictions. It did not have an assumption facility and the corresponding nogood machinery,
and had no provision for dealing with parts of the network as algebraic cxpressions, though the
paper contains some discussion of the possibilities.

The system in [Stcele 1979] did have onc interesting and uscful feature that the system
presented here does not (though it would not be that difficult to add): equatings could be stated not
only between two cells, but between two constraints of like type. Such an cquating implied recur-
sive equating all the corresponding parts (sub-devices, pins, and other variables) of the constraint.
This of course is similar in intent to the merging facility of SKETCHPAD and THINGIAB. However,
those two systems did not maintain dependency information. When dependencies are maintained,
some record of the merging must be kept to enter into explanations. In the system of [Steele 1979),

PP

R

.

et i s e o 3 P e e aun

356 CHAPYER TEN CONCI.USIONS

this was done by letting the merged objects remain distinet and passing values back and forth over
an cxplicit equality link. A more efflicient technique would be to merge the two objects into a single
one, with a notation as to how to undo the process (this is done in 1MUINGLAB). Better yet, some
analogous thing might be found to do for constraint objects what | have done here for cells, letting
them share a central “repository™ structure while maintaining other individual components.

10.1.11. Other Work Using Coustraints

There are several lines of research into the applications of constraints. None of these, [belicve,
is aimed dircctly at the construction of a general-purpose constraint langtiage, but the ideas in
them are interesting and result from the pressures of a real application of the concept. While the
work | have presented in this dissertation docs not draw directly from all of these, yet it has been
influenced by the existence of cach one. through conversations 1 have had with the authors or
papers they have written,

Ken Forbus has used constraints to perform qualitative analyses of situations experiments in
classical mechanics. He has implemented in MACHISP an cfficient and extended version of the
constraint language used in [Stecle 1979). which was written in SCHEM: {Steele 1978a].

1.. Peter Deutsch, while visiting ML for half a ycar, worked on the theory of constraints and
had many conversations with me. His primary goal (as | understand it} was to write a constraint
system suitable for supporting a text processor, which must have constraints on margins, paragraph
sizcs, and so on.

Howard Shrobe has used constraints in an integrated-circuit design program [Shrobe 1980],
and applicd dependency analysis to the understanding of computer programs [Shrobe 1979].

[Luc Steels has been experimenting with constraint propagation within an actors/frame or-
ganization. [Stecls 1979] {Steels 1980} Rather than using a centralized general ‘I'ruth Maintenance
System, he lets cach constraint have its own arbitrary rules for restoring consistency. He “treats
a constraint as a propositional object”, but by this he does not mecan what 1 do when 1 say that
I would like a constraint to be an object of the language. In his language, treating the constraint
as an object means that its value (a truth value) indicates whether or not the constraint is in force
or not. (This is similar to my suggestion in §6.3.27 that cvery primitive constraint have two cxira
pins. onc as a conditional control and the other as a biconditional control on whether or not the
constraint is in force.) What { mean by letting a constraint be an object is that it can be a value,
rather than having a value, to which constraints can be applied. Of course, adder and maxer
constraints would not make scnse applicd to a constraint, but an apply operator or a mapcar
sort of operator would make sense.

Richard Brown has written an impressive system [Brown 1980] which synthesizes numerical

programs by constructing a network of constraints, propagating numerical and symbolic informa-

4

=-F

——— ————

i e e e i e a2t e s AR i e

Vi

§10.2 Present and I'uture Work 357

tion within it, and then extracting an algebraic description of rclevant portions of the network in
the form of an cxecutabie LISP program. Brown's terminology is not at alf the same as mine; what
1 call a macro-device he calls a complex device, the term macro-device having a slightly different
meaning for him: it is a complex device whose definition is a subnctwork which the system extracts
from a given network in order to explain the relationship between a given set of nodes. Brown
notes that a complex device is created for every macro-device extracted.

1 observe that Brown's macro-devices are generally used in situations where some functional
relationship must be found between two (or more) nodes so that some other part of the network
can act as an opcerator on the function which expresses the relationship; that is, as a constraint on
a constraint. 1 would find it more natural to let constraints be objects of the language, and express
his biscction-scarch other strategics as constraints which take other constraints as arguments. To use
a mathematical analogy. Brown’s system (inetaphorically) takes derivatives by accepting a notation
such as d f{z}/dz. looks at the two places after the d's, and figures out the functional relationship
between them, and then takes the derivative of that function. By contrast, T would prefer simply
to write d f and be done with it. To use a progranuning-language analogy, Brown's system uses
Jensen's device, while | would prefer to use functional arguments. A fair amount of Brown’s system
is devoted to the heuristic extraction of macro-devices; this is necessarily heuristic. 1t amounts to
a separation of level from meta-level after they have been mixed. 1 would view biscction-scarch as
a “special form” rather than a “simple constraint™. (Sec [Stecle 19784} and [Steele 1978b], on the
semantics of LISP and SCHEME, from which | draw my analogies.)

10.2. Present and Future Work

10.2.1. Tables Can Be Done *“The Obvious Way™ or by “Algebra™

By a “table™ I incan a data structurc which has individual parts into which another object can
be stored; this includes arrays, record structures, cons cells, character strings (i.c., thosc which can
be modificd), and so on. 1 use the word “table™ to avoid mceaning any onc of these specifically. The
interesting characteristic of a table is that given a table a and a sclector k (a number, say), one can
access a variable ag which the table associates with that selector. It is important that the sclector can
be variable, i.c., computed.

Onc approach to implementing these involves using the obvious sort of internal data structure,
say an array or a-list. pairing sclector values with associated values. Onc quickly concludes that
what must be associated with a selector is a cell, for a table can be partially specified, with some
components having known values and others not. This structure complicates the propagation

T L e v
[PV L SN SN .

A At e o

358 CuApr1eR TEN CONCL.USIONS

process. Suppose that a constraint (part x a s) is provided which enforces the relationship
that the s’th component of the table a contains the value (i.c., is equated o) =, Then if s becomes
known, cells containing the table must be awakened, because they may be connected to other
part constraints which might be interested in the new value. ‘this is slightly strange internally
if one isn't thinking carcfully; in some sensc the table has not changed—-it is still the same data
structure—but it has become “more known™ than it was before, There is a spectrum of known-ness,
rather than a dichotomy of known versus unknown.

‘There is also a problem when two tables “collide”. Consider the following sequence of state-
ments:

(part 43 a 1)
(part 69 b 2)
(== a b)

When the first part constraint is created, presumably (at Jeast. | would do it this way) the variable
a gots as its value a tablc whose part named 1 is 43. Similarly b has as valuc a table whosc part 2
has the valuc 69. When a and b arc cquated, we should expect the two internal table structure to
be logically merged, so that a and b both have as value the sclf-same table which has two defined
parts named 1 and 2. This is implementationally difficult to do correctly, expecially so that it may
be undone. (This is a problem of merging structures which may not have like parts. 3y the way, this
is why my system has always had a function called merge-values; the intention was that this
routine would be responsible for merging tables.)

Notice that the representation of a constraint in my system is actually very much like a table.
A constraint has named parts. One cxperimental constraint system 1 have implemented deals
with a problem of the systems presented in this dissertation, which is that it is not truly order-
indcpendent with respect to user input, because create statements for a device must precede any
references to parts of that device. This would seem reasonable; but then again, why should one
not be able to refer to the a pin of a device not yet specified. expecting to plug it in later? This
is an essential prerequisite to the ability to have the analogue of functional arguments: constraints
that operate on other constraints. ‘The experimental system I refer to allowed one to make such
“forward references”. If one referred to (the b foo) and foo was not yet defined to be a
device, then it was defined to be a b~device, that is, a device whosc only property is that it
has a b pin: such a device has no rules. If one then later referred to (the a foo) then foo
would also be defined to be an a-device, which dcfinition would then be merged with the
b-device dcfinition to produce a definition of foo as an a-b-device. When cventually one
said (create foo adder), the adder definition would be merged with the other, and pins of
like name identified. ‘This was all very complicated and | was unable to combine it with retraction

in a straightforward way.

PR —

sl @

§10.2.2 ‘ Present and Future Work 359

The other way to deal with tables is by “algebra™, Rather than having any special value which
represents a table in a cell, we let the structure of the network represent the table. ‘Thus, if scveral
part constraints all have their a pins connccted together, than they collectively constitute the
relevant structure of the table, for they relate sclectors to componcats, Alf that is needed is a rule of
algebra that states that if (part x a s) and (part y a v) and s is cqual to v then install
an cquating between x and y. Such an cquating must be retractable, of course, in case s or v is
retracted! 1t also requires the ability to alter the network on the basis of the computation (which is
what | mean when 1 say “algebra”).4

While the algebraic method may seem more appealing, the arithmetic (or explicit data struc-
ture) method has the advantage of consolidating, in the explicit table data structure, those connec-
tions which arc of interest to the table identitics, distinguishing them from other equatings to table
components.

10.2.2. Recursive Constraint Definitions Require Conditional Kxpansion

As discussed in §8.4, the present macro mechanism does not allow the definition of recursive
macros, because a macro is fully expanded when it is instantiated. Much better would be a
mechanism analogous to a procedure call, where a macro-constraint is not instantiated until it is
“called” (i.c., until at least onc of its pins is known, or perhaps one of a sct of combinations of pins
specified in or derived from its definition). Gerald Sussman has also suggested that one might want
to have a more explicit handle on the problem by having a special form, say

(when var body)

meaning that the network described by body ought not be constructed until such time as var takes
on the value true. This is not required to be retractable, however; if var becomes false, the con-
structed network remains. This scems to me a rather brute-force approach, but it does work (1 have

tried it in one experimental system),

10.2.3. Explanations Should Take Advantage of the Macro-Call Hierarchy

In §8.3 1 bricfly mentioned the possibility of producing summary explunations by glossing
over the details of the contents of a macro-device. t is cssential that explanations of large computa-
tions be abbreviated to be comprehensible. It is both convenient and natural to usc the hicrarchy of
the macro-call hicrarchy to guide the summarization process.

4. [think that there is perhaps a platcau up to which | have had trouble scaling the clilf. If any one of tables,
algebra, or meta-constraints could be handled properly in combination with dependencics and retraction, then the
others would come through easily. But it is a difficult feat to get any onc of these.

T T e e o
WEVFF (PP IS SR

i x
alt. Y,

360 CHAPTER TEN CONCLLSIONS

Doyle [Doyle 1978a] [Doyle 1979] notes that summaries can be logically represented in the
form of conditional proofs, from which, oncc they are constructed, summary explanations arc casily
produced. However, it is not always clear when it is uscful to construct such a conditional proof.
In the context of the macro-call hicrarchy. howcever, it is natural to summarize the definition of the
macro-device as a single fact, so that onc can say that the computed results depend on the input
valucs plus this single fact, which in turn is supported by the conjunction of a large number of facts
(the definitions and connections which define the macro-device).

The current constraint system doces ot really represent the fact that o value is used by or
produced by a macro-constraint; the macro-call hicrarchy in cffect merely provides additional
names for a node in the form of pins and variables of the macro-constraint. Such pins do
show up in the dependency structure of the computation, in the list of connections provided by
why-ultimately. What is nceded is a mechanism to recognize this fact and omit details of the
“insides” of a macro-coustraint.

10.24. A Constraint Language Should be Mcta-Circular

I have held as a goal toward the start, that I admit | have not even closely approached but
insist has been a valuable guide in definition and implementation, that a general-purpose constraint
language should be powerful cnough to express an interpreter for itself. (This is the analogy to a
law which | have often stated in bull sessions, and befieve to be original with (though probably not
unique to) me: A general-purpose programming language isn't, if it can’t conveniently implement
itsclf. An example of one which isn’t is BASIC.)

First, there need to be appropriate primitive constraints. This causes the constraint language to
be a meta-language for itsclf. FFor example, onc might need

(pin p c n)

which causes p to be equated to the pin named n of the constraint ¢ (compare this with the
part constraint suggested in §10.2.1). One might also want

(callt ¢ xy z...)

to mean that if the value of the variable ¢ is a constraint bar of type foo, then it is as if one had

written
((foo bar) x y z ...)
(This is analogous to the MACLISP function funcall. [Moon 1974])

Once the language is sufficiently powerful, then it can be used to express its own interpreter
(possibly using certain featurces to express themscelves, as when in a 11SP interpreter written in LISP

one writes somcthing like

.

§10.2.5 Present und Future Work 361

(cond ((eq fun-name ‘cons) (cons (car arguments) (cadr arguments)))
((eq fun-name ’‘car) (car (car arguments)))

in the definition of the apply function—it is this property that Reynolds calls meta-circularity.
[Reynolds 1972)

10.2.5. Algebra Is Operating on the Network Structure

While local propagation can take one very far, there arc many situations it cannot handle. |
belicve that the solution is to supplement local propagation with a very limited way of augmenting
the network structure under computational control to instantiate algebraic identities. 'These cor-
respond to several ways of viewing the same relationship, where the various points of bicw are ex-
pressed as networks with differing structure (and so they express interesting semantic relationships
betwen the different networks). This is to be distinguished (rom the ability of the current system
to take several points of view concerning the same network structurce; this is a more syntactic kind
of algebra that can be performed without reference to the semantics of the constraints, but only
using the topology of their conncctions. Ways of introducing multiple points of view are discussed
in [Sussman 1977} and {Stecle 1979]. Richard Brown’s system [Brown 1980] in fact implements such
algebraic augmentation of the nctwork. Onc can imagine facilitics for patiern-directed invocation
of algebra rulcs that would trigger on specified network configurations when new connections were
made.

10.2.6. 'The System May Need Control Advice from the User

Reality being what it is, somctimes the system’s automatic control structures will thrash wildly
without some advice from the user on in what order to perform computations. The priority queue
structure of Chapter Six, for example, provides some automatic control heuristics, but the user may
need to fine-tune these.

An approach | find intriguing might be borrowed from the I1C-PROIOG system. [Clark 19807]
"This version of PROLOG allows onc to annotate the argument forms to “procedure calls™ to indicate
that a particular argument is a “lazy producer™ of values or an “cager consumer™ of them. To
translate this concept to the constraint system: a pin of a constraint-typc could be labelled by a ?
(this pin is an cager consumer) or a ! (this pin is a lazy producer). Then rules with triggers labelled
? would have very high priority when such a trigger received a value; and rules with output pins
labelled 1 would have lowered priority. Morcover, if another constraint’s rule has an output pin
connected to an cager consumer cell, then that rule has high priority (and this overrides any !

—— .

t
I
t
14

362 CuAPTER TEN CONCLUSIONS

annotation of that output pin). Using this annotation scheme one can express co-routines and such
using recursively defined constraints.

Another way to control the order of computation is to let every constraint have an extra con-
ditional control pin, as suggested in §6.3.27. ‘Then a network of meta-constraints could selectively
cnable and disable constraints via this pin; a disabled constraint would not propagate, and cnabling
would alfow rules to be awakenced. ‘This technique in particular might be of use in combination
with algebraic techniques. Very often, in a redundantly specified netwoik, one can determine that
several subnetworks are duplicating cach other’s efforts. ‘This could be detected by pattern-directed
mcthods, and an algebra rule triggered that would disable the redundant versions of the network,
or perhaps just give them low priority.

10.2.7. ‘Techniques Are Needed for Run-time Storage Reclamation

Onc property of the recording of dependency information is that the entire history of the
computation is maintained. This is an advantage, but it also poscs a problem, in that it takes
memory to hold the history. In a practical constraint system there will need to be ways to reclaim
data structures which arc unused or likely not to be used. The best candidates for reclamation are
thosc structures which can be recomputed if necessary.

In a constraint system with an abstraction hicrarchy, one could reclaim the dependency struc-
tures, and cven the networks, for the bodics of macro-constraints, leaving behind the results that
had been computed from the inputs. (1f later the dependency structures are traced, the syustem can
report: “l computed it using this macro-constraint, whose instance here 1 garbage-collected, but |
assurc you that it was a valid computation—and if you likc | will reconstruct the proof.™) If one is
interested in reclaiming devices, a good choice might be devices whose pins all have values, for in
some sense they have done all the work they can. (The appearance and disappearance of devices
is analogous to the appcarance and disappcarance of incarnations of a procedure; the incarnation
appears (perhaps in the guise of a frame on the run-time stack) when the procedure is needed, may
survive for a while in a co-routining context, and then disappears when it is done.)

Another possibility is reclamation of nogood sets. There are at least two cases of interest. One
is that resolution may produce a new nogood sct that supersedes an old nogood set for some node,
in that the sct of pairs in the ncw nogood sct is a proper subsct of that of the old nogood set. In this
case the old one can be reclaimed. Doing this «fficiently would require a more complex indexing
structurc for nogood scts than [have used here, but would probably be worth a great deal. 1t would
certainly decrease the time spent checking nogood scts when solving something like the N quecens
probiem as in §6.4.

‘The other possibility for reclaiming nogood scts is necessarily heuristic. One would simply
throw away nogood scts containing values which are (for some rcason) considered to be unlikely

R

e il b e atus i i

§103 ’ Contributions of This Research 363

to recur. Such nogood sets can always be recomputed if necessary. Perhaps with each nogood set
might be recorded some measure of the effort that was necessary to compute it, and cheap oncs
might he discarded before expensive oncs. Care is necded, of course, to prevent thrashing caused
by constantly reclaiming and recreating a nogood set.

10.3. Contributions of This Research

‘These are what | believe to be the new and original contributions of the rescarch reported by
this dissertation:

e | attempted to design a complete, gencral-purpose programming system organized around con-
straints. While this goal has not yet been met, yet | have made some progress toward it.

e ‘The structure of thc implementation matches the imagery of the paradigm. Data structures

which arc thought of as being dircctly connected (as for example in a diagram of a network)
actually are connected.
(If this point seems trivial, consider two implementations of LISP, onc using the usual pointer
representation, and one operating on S-expressions represented in “external form”, as character
strings. An implementation of the latter form may seecm manifestly laughable, but consider: (1)
McCarthy mentioned the possibility of such an implementation inone of the first carly papers
on LISP. [McCarthy 1960] (2) Church’s lambda calculus [Church 1941], an intcllectual precur-
sor to LISP, was defined in ‘erms of manipulations on strings, not trees, of symbols. The tree
representation had to await computer imnplementation. (3) Certain program cditors for LISP,
notably the cousins EMACS [Stallman 1980] (the cditor usually used by the MACLISP community
[Moon 1974)) and Zzwel (the editor for Lisp Machince LISP [Weinrch 1979]), represent those
programs as character strings and yct manipulate S-cxpressions, as if performing car, cdr,
and consoperations, by manipulating these strings. For some purposes, such as pretty-printing,
the character string rcprcsentalion is actually more convenicnt than the pointer representation.
(Indeed, that is why we write LISP programs as character strings rather than box-and-arrow
diagrams!) Thercfore the string representation is not obviously impractical for all purposes. On
the ather hand, the pointer representation is certainly much more economical for most purposcs,
and this follows our intuitions about explicitly representing interesting relationships (such as car
and cdr) directly. The points arc that (a) alternative representations need to be explored, and (b)
a representation which conforms to a pictorial image may scem more cumbersome at first but
may be more efficicnt becausc interesting relationships arce represented directly.)

e The structure of the implementation is closer to being suitable for implementation on multiple
processors than any other constraint system. (The organization of 1T1INGLAB [Borning] inight on
the surface appear to be equally suitable, but the internal usc of pathnames rather than direct

364 CHAPIER TEN CONCILUSIONS

puinters causes probicms.) Considerable effort has been made to make small the quanta of
necessarily indivisible computation,

The rescarch was conducted with the principles of order-independence, locality, and monotonicity
always explicitly in mind. 'These principies are ¢ssential to the design of a constraint system.
Order-independence prevents the system from relying on the form of the input; its computa-
tions should be derived from the content only. Locality and monotonicity are important to the
conceptual simplicity and comprehensibility of the system.

This system deals explicitly with the problem of behaving properly in the presence of contradic-
tions. Just as Doyle and McAllester had o make the distinction between the truth of a fact
and the beliefin a fact, so T have noted the distinction between the consistency of a system and
the well-foundedness of the system. Every computation, cvery deduction made by the system
presented here is well-founded: cach result is validly deduced from given premises. If the
premiscs are inconsistent, then the conclusions may be contradictory, but they will nevertheless
have correct justifications.

It is important for a constraint system to be tolerant of contradictions; if a problem arises in
a large system of relationships, the user may not want to deal with the problem immediately.
He may want to investigate the problem, or work on distantly related parts of the network that
may be affected by the contradiction only slightly or not at all. Another case, common when
revising designs for cngincered artifacts, is that the uscr wants to change several parameters at
once; changing any one would produce a hopeless snarl of contradictions, but if the user can
only tell the system, “Wait,” then he can make the other changes to make the system consistent
again.

Previous Truth Maintcnance Systems have been relatively intolerant of contradictions, insisting
that cach one be resolved immediately. The system | have presented is tolerant. ‘The state
of a network containing contradictions is well-defined, because it is well-founded, and the com-
putation and cxplanation mechanisms can still behave reasonably and intuitively. Heuristics
(lowered priority for computing consequences of values known to be in conflict) prevent the
wasting of computational effort on deductions likely to be retracted soon.

To God alone be the glory. Amen.

[V S SNUR N VRN U I

The Party of the first Part
And the purty of the next
Are partly participled

In a parsiey-covered 1ext.

Were yvou partial 1o a Party
That has parceled ovut its parts
With the Purty that was second

In your polly-tickle heari? R ef erences

Then parluy all your losings
On « horse that's mnning dark—
With lights-out you may triple
In a homer in the purk.
—Walt Kclly (1952)
! Go Pogo

[Ackerman 1979]
Ackermann, William B., and Dennis, Jack B. vaL: 4 Value-Oriented Algorithmic Ianguage
(Preliminary Reference Manual). MIT/LCS/TR-218. M.LT. Laboratory for Computer
Science (Cambridge, Junc 1979).

[Arvind 1978]
Arvind: Gostelow, Kim P.; and Ploufie, Wil. An Asynchronous Programming [anguage
and Computing Machine. Department of Information and Computer Science, University of
California (Irvine, December 1978).

[Bohrow 1980]
Bobrow, 1anicl G., and Winograd, ‘lerry. Response to Knowledge Representation
Questionnaire. ACM SIGART Newsleteer 70 (February 1980), 85.

[Borning 1979]
Borning, Alan. TIINGLAB: A Constraint-Oriented Simulation Laboratory. SS1.-79-3. Xerox
Palo Alto Rescarch Center (Palo Alto, California, July 1979).

[Brown 1980}
Brown, Richard Henrv. Coherent Behavior from Incoherent Knowledge Sources in the
Automatic Synthesis of Numerical Computer Programs. Ph.1. Dissertaiion, MLL'T. (Cambridge,
Junc 1980).

[Church 1941)
Church, Alonzo. The Caleuli of Tambda Conversion. Annals of Mathematics Studics Number
6. Princeton University Press (Princeton, 1941). Reprinted by Klaus Reprint Corp. (New
York, 1965).

365

T

366 References

[Clark 19807)
Clark, K.L.. and McCabe, F.G. The Control Iacilities of 1C-PROLOG. Department of |
Computing and Control, Imperial College (1.ondon, undated, circa 19807).

[de Kleer 19784)
de Kleer, Johan; Doyle, Jon; Rich, Charles; Steele, Guy L. Jr.; and Sussman, Gerald
Jay. AMORD: A Deductive Procedure Sysitem. Al Mcemo 435. MLLT. Artificial Intelligence
l_aboratory (Camnbridge, January 1978). ' f

[de Kleer 1978b]
de Kleer, Johan, and Sussman, Gerald Jay. Propagation of Constraints Applied to Circuit
Synthesis. Al Memo 485. MLLT. Artificial Intelligence aboratory (Cambridge, Scptember
1978). Also in Circuit Theory and Applications 8 (1980), 127-144.

[Dennis 1973]

Dennis, 1.B. First Version of a Data Flow Procedure Fanguage. Computation Structures
Group Memo 93. M.LT. Laboratory for Computer Science (Cambridge, November 1973).
Revised as MLLT. Project MAC 'I'M-61 (May 1975).

[Dennis 1975)

Dennis, J.B., and Misunas, D.P. “A Preliminary Architccture for a Basic Data-Flow
Processor.” Proc. Second Annual Symposium on Computer Architecture (January 1975), 126-
132

[Doyle 1977}

Doyle, Jon, dc Klcer, Johan, Sussman, Gerald Jay, and Steele, Guy L. Jr. “AMORD: Explicit
Control of Reasoning.” Proc. Al and Programming languages Conference (Rochester, New
York, August 1977). ACM SIGPI.AN Notices 12, 8, ACM SIGART Newsletter 64 (August
1977), 116-125.

{Doyle 1978a]

Doyle, Jon. Truth Maintenance Systems for Problem Solving. S.M. Dissertation, M.L'T.
(Cambridge. May 1977). AI-TR-419. M.LT. Artificial Intclligence I.aboratory (Cambridge,
January 1978).

[Doyle 1978b)

Doyle, Jon. A Glimpse of Truth Maintenance. A} Memo 461a. M.LT. Artificial Intelligence
Laboratory (Cambridge, November 1978). '

[Doyie 1979}

Doyle, Jon. A Truth Maintenance System. Al Memo 521, M.LT. Artificial Intclligence
Laboratory (Cambridge, Junc 1978). Also in Artificial Intelligence 12 (1979), 231-272.

Eopy

[Eder 1976]
Eder, Gottfricd. A PROL.OG-like Interpreter for Non-Horn Clauses. 1.AL. Rescarch Report

References 367

26. Department of Artificial Intelligence, University of Lidinburgh (Edinburgh, September
1976).

[Fahlman 1977]
Fahlman, Scott E. NETL.: A System for Representing and Using Real-world Knowledge.
Ph.DD. Disscrtation. M.L'T. (Cambridge, September 1977). Also published by M.LT. Press
(Cambridge, 1979).

[Fateman 1973]
Fateman, Richard J. “Reply to an Editorial.™ ACM SI1GS AM Bulletin 25 (March 1973), 9-
11.

[Floyd 1979]
Floyd, Robert W. *The Paradigms of Programming.” 1978 ACM l'uring Award |.ccture.
Comm. ACM 22, 8 (August 1979), 455-460.

[Freuder 1976] ,
Freuder, Eugene C. Synthesizing Constraint Fxpressions. Al Memo 370. M.LT. Artificial
Intelligence {.aboratory (Camnbridge, July 1976).

[Goldberg 1976]
Goldberg, Adele, and Kay, Alan. SMALLTALK-72 Instruction Manual. 1.carning Rescarch
Group, Xcrox Palo Alto Rescarch Center (March 1976).

[Gries 1977)
Grics, David. “An Exercisc in Proving Parallel Programs Correct.” Comm. ACM 20, 12
(December 1977), 921-930.

[Grossman 1976]
Grossman, Richard W. Sume Data Base Applications of Constraint I'xpressions. S.M.
Dissertation. M.LT. (Cambridge, January 1976). Also TR-158. M.LI. lLaboratory for
Computer Science (Cambridge, February 1976).

[Knuth 1973]
Knuth, Donald E. The Art of Computer Programming, Volume 3: Sorting and Searching,
Addison-Wesley (Reading, Massachusctts, 1973).

{Kowalski 1974)
Kowalski, Robert. “Predicatc Logic as Programming l.anguage.” Information Processing 74.
North-Holland (1974).

[Kowalski 1979]
Kowalski, Robei “Algorithm = Logic + Control.” Comm. ACA 22, 7 (July 1979), 424~
436.

Al) Ll B s

o oot

g g -

o B

368 References

[Kowalski 1980)
Kowalski, Robert. Response to Knowledge Representation Questionnaire. ACM SIGART
Newsletter 70 (February 1980), 44.

[McAllester 1978]
McAllester. David A. A Three Valued Truth Maintenance System. Al Memo 473. M.LT.
Artificial Intelligence [aboratory (Cambridge, May 1978).

{MceAllester 1980]
McAllester. David A. The Use of lquality in Deduction and Knowledge Representation.
S.M. Dissertation, M.LT. AIFTR-550. M.L'T. Artificial Intelligence 1.aboratory (Cambridge,
January 1980).

[McCarthy 1960]
McCarthy, John. “Recursive Functions of Symbolic Expressions and Their Computation by
Machine — 1" Comm. ACM 3, 4 (April 1960), 184-195.

{McDermott 1979]
Mcbermott, Drew V., and Doyle, Jon. Non-Monoronic Logic — 1. Al Memo 468b. M.LT.
Artificial Intelligence l.aboratory (Cambridge, August 1978, revised July 1979). Also in
Artificial Intelligence 13 (1980), 41-72.

[McDermott 1980]
McDiermott, Drew. “The PROLOG Phenomenon.” ACM SIGART Newsletter 72 (July 1980),
16-20.

[Moon 1974]
Moon, David A. Macl ISP Reference Manual (Revision 0). Project MAC, MLLT. (Cambridge,
April 1974).

[Owicki 1975)
Owicki, Susan Speer. Axiomatic Proof Techniques for Parallei Programs. Ph.D). Dissecrtation.
TR 75-251. Departinent of Computer Science, Cornell Univer.:ty (Ithaca, New York, July
1975).

[Pract 1977]
Pratt, Vaughan R. “The Competence/Performance Dichotomy in Programming.” Proc.

Fourth ACM Symposium on Principles of Programming Languages (POl) (1.os Angeles,
January 1977), 194-200.

[Quillian 1968]
Quillian, M. Ross. “Semantic Mcmory.”™ In Minsky, Marvin (ed.), Semantic Information
Processing. M.L'T. Press (Cambridge, 1968).

.3 -

.

-

References 369

[Reynolds 1972)
Reynolds, John C. “Definitional Interpreters for Higher Order Programining Ianguages.”
Proc. ACM National Conference (Boston, 1972), 717-740.

[Shrobe 1979]
Shrobe, Howard Elliot. Dependency Directed Reasoning for Complex Program Understanding.
Ph.D. Disscrtation, M.LT. AFFTR-503. M.LT. Artificial Intelligence Laboratory (April 1979).

[Shrobe 1980]
Shrobe, Howard. “Constraint Propagation in VESI Design: bAEDALLS and Beyond.”
Abstracts from Spring 1980 M.L'T. VLST Rescarch Review. (Cambridge, May 1980).

ISloman 1980]
Sloman, Aaron. Response to Knowledge chrcscnlatioli Qustionnaire. ACM SIGART

Newsletter 70 (I-ebruary 1980), 86.

[Staliman 1977]
Staliman, Richard M., and Sussman, Gerald Jay. [Forward Reasoning and Dependency-
Directed Backtracking in a System for Computer-Aided Circuit Analysis. Al Memo 380.
M.LT. Artificial Intelligence Laboratory (Cambridge, Scptember 1976). Also in Artificial
Intelligence 9 (1977), 135-196.

[Stallman 1980]
Stallinan. Richard M. EMACS Manual for 178 Users. Al Memo 554, ML Artificial
Intelligence §aboratory (Cambridge, Junc 1980).

[Steele 1977]
Steele, Guy fewis Jr. “Fast Arithmetic in Macl.ISP.” Proceedings of the 1977 MACSYMA
Users’ Conference. NASA Sci. and Tech. Info. Office (Washington, D.C.. July 1977), 215~
224,

[Steele 1978a)
Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Revised Report on SCHEME: A Dialect of
1ISP. Al Memo 452, MLLT. Artificial Intelligence 1.aboratory (Cambridge, January 1978),

[Steele 1978b]

Stecle, Guy lewis Jr., and Sussman, Gerald Jay. The Art of the Interpreter; or, The
Modularity Complex (Paris Zero, One, and Two). Al Memo 453, MLLE. Artificial Intelligence

l.aboratory (Cambridge, May 1978).

[Steele 1979]
Steele, Guy Lewis Jr., and Sussman, Gerald Jay. “Constraints.” Al Memo 502. MLLT.
Artificial Intelligence I.aboratory (Cambridge, November 1978). Invited paper. Proceedings
APL 79, ACM SIGPLAN STAPL APL. Quote Quad 9, 4 (Junc 1979), 208-225.

£

“_,,_‘,,,-,_

2

Iy

370 References

[Steels 1979]
Steels, Luc. The xer1 Description System. Al Working Paper 178. M.LT. Artificial
Intelligence 1.aboratory (Cambridge, January 1979).

{Steels 1980]
Stecls, Luc. The Constraint Machine (draft). Schiumberger-Doll Rescarch 1ab (Ridgeficld,
Connccticut, May 1980).

[Sussman 1971]
Sussiman, Gerald Jay: Winograd. Terry: and Charniak, Fugene. MICRO-PLANNER Reference
Manual. Al Memo 203A. MLLT. Artificial [ntelligence Laboratory (Cambridge, December
1971).

[Sussman 1972)
Sussman, Gerald Jay, and McDermott, Drew Vincent. “Why Conniving is Better than
Planning.” Al Mcmo 255A. ML.L'T. Attificial Intelligence Laboratory (Cambridge, April
1972). Also appeared as “From PI ANNER to CONNIVIER—A Genctic Approach.” Proc. 1972
Fall Joint Computer Conference. AFIPS Press (Montvale, New Jersey, 1972), 1171-1179.

[Sussman 1975]
Sussman, Gerald Jay. and Stallman, Richard M. Heuristic Techniques in Computer-Aided
Circuit Analysis. Al Memo 328. M.L'T". Artificial Intelligence Laboratory (Cambridge, March
1975). Also in [KELE Transactions on Circuits and Systems Vol CAS-22 (11) (November
1975).

[Sussman 1977]
Sussman, Gerald Jay. SUICES: Ar the Boundary between Analysis and Synthesis. Al Memo
433. MLLT. Artificial Intelligence [aboratory (Cambridge, July 1977).

[Sutherland 1963]
Sutherland, Ivan E. sketcniean: A Man-Machine Graphical Communication System. M.LT.
Lincoln Laboratory ‘Technical Report 296 (January 1963).

[Waltz 1972)
Waltz, David L.. Generating Semantic Descriptions from Drawings of Scenes with Shadows. Al
TR-271. MLLT. Artificial Intelligence aboratory (Cambridge, November 1972).

{Warren 1977a)
Warren, David H.D. Impiementing PROL.OG: Compiling Predicate 1.ogic Programs. "T'wo
volumes. D.A.LL Rescarch Reports 39 and 40. Department of Artificial [ntelligence,
University of Edinburgh (I:dinburgh, May 1977).

[Warren 1977h)
Warren, David H.D., and Pereira, Luis. “PROLOG: The Language and lts Implementation
Compared with 11SP." Proc. Symposium on Artifical Intelligence amd Programming .anguages

i
1
¢

References 371

(Rochester, New York, August 1977). ACM SIGPLAN Notices 12, 8, ACM SIGART
Newsletier 64 (August 1977), 109-115.
[Weinreb 1979]
' . Weinreb, Danicl, and Moon, David. Lisp Machine Manual (Second Preliminary Version).
: M.LT. Artificial Intclligence {_aboratory (Cambridge, January 1979).

[Winston 1974]
Winston, Patrick Henry. New Progress in Artificial Intelligence. A1 TR-310. M.LT. Artificial 4
Intelligence Laboratory (Cambridge, Junc 1974).

{Winston 1977]

Winston, Patrick Heary., Artificial Intelligence. Addison-Wesley (Reading, Massachusetts,
1977). §

m

1" #5%8&’
()ot,-./
01234567
89:;<=>7?
@ARCDEFG
HIJK1.MNO
PQRSTUVW
XYZ[\]r _

il

References

Ya st

,“"‘-. POV TS W

%

R N O ST o S LN

